Citation: Wen-Qiang Qu, Yi-Ran Xia, Li-Juan Jiang, Li-Wei Zhang, Zhao-Sheng Hou. Synthesis and characterization of a new biodegradable polyurethanes with good mechanical properties[J]. Chinese Chemical Letters, ;2016, 27(01): 135-138. doi: 10.1016/j.cclet.2015.07.018 shu

Synthesis and characterization of a new biodegradable polyurethanes with good mechanical properties

  • Corresponding author: Zhao-Sheng Hou, 
  • Received Date: 10 June 2015
    Available Online: 3 July 2015

    Fund Project: Jinan City Universities and Institutes Independent Innovation Planning Project, China(No. 201402044). (No. ZR2013EMM004)

  • In the paper, a new biodegradable polyurethane(PU, PU-I) was prepared:the prepolymer was synthesized via bulk ring-opening polymerization with poly(ethylene glycol)(Mn=600)(PEG600) as an initiator and L-lactide(L-LA), e-caprolactone(CL) as monomers, and the prepolymer was chain-extended with an isocyanate-terminated urethane triblock(macrodiisocyanate) to prepare the PU. The macrodiisocyanate, prepolymer and PUs were characterized by 1H NMR, 13C NMR, FT-IR, high resolution mass spectrometry(HR-MS), gel permeation chromatography(GPC), thermo gravimetric analysis(TGA), and differential scanning calorimetry(DSC). The corresponding PU films showed excellent mechanical properties with a tensile strength of 27.5 MPa and an elongation at break of 996%, and also maintained mechanical properties in physiological saline at 37℃ for more than three weeks, which appeared to be more suitable for biomedical applications.
  • 加载中
    1. [1]

      [1] C.V. Mythili, A.M. Retna, S. Gopalakrishnan, Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol, Bull. Mater. Sci. 27(2004) 235-241.

    2. [2]

      [2] B. van Minnen, M.B.M. van Leeuwen, B. Stegenga, et al., Short-term in vitro and in vivo biocompatibility of a biodegradable polyurethane foam based on 1,4-butanediisocyanate, J. Mater. Sci. Mater. Med. 16(2005) 221-227.

    3. [3]

      [3] N.J. Song, X. Jiang, J.H. Li, et al., The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering, Chin. J. Polym. Sci. 31(2013) 1451-1462.

    4. [4]

      [4] N.Y. He, C. Yang, Z.C. Liu, Z.H. Lu, Polyurethane molecular stamps for the in situ synthesis of DNA microarray, Chin. Chem. Lett. 13(2002) 883-886.

    5. [5]

      [5] R.G.J.C. Heijkants, R.V. van Calck, J.H. de Groot, et al., Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration, J. Mater. Sci. Mater. Med. 15(2004) 423-427.

    6. [6]

      [6] F.I. Broekema, W. van Oeveren, M.H.A. Selten, et al., In vivo hemostatic efficacy of polyurethane foam compared to collagen and gelatin, Clin. Oral Investig. 17(2013) 1273-1278.

    7. [7]

      [7] W. He, Z.J. Hu, A.W. Xu, et al., The preparation and performance of a new polyurethane vascular prosthesis, Cell Biochem. Biophys. 66(2013) 855-866.

    8. [8]

      [8] C.J. Spaans, J.H. de Groot, F.G. Dekens, A.J. Pennings, High molecular weight polyurethanes and a polyurethane urea based on 1,4-butanediisocyanate, Polym. Bull. 41(1998) 131-138.

    9. [9]

      [9] A. Saralegi, A. Etxeberria, B. Fernández-d'Arlas, et al., Effect of H12 MDI isomer composition on mechanical and physico-chemical properties of polyurethanes based on amorphous and semicrystalline soft segments, Polym. Bull. 70(2013) 2193-2210.

    10. [10]

      [10] V.K. Hridya, M. Jayabalan, Studies on in vitro biostability and blood compatibility of polyurethane potting compound based on aromatic polymeric MDI for extracorporeal devices, J. Mater. Sci. Mater. Med. 20(2009) 195-202.

    11. [11]

      [11] R.C.S. Araújo, V.M.D. Pasa, Thermal study of polyurethane elastomers based on Biopitch-PEG-MDI system, J. Therm. Anal. Calorim. 67(2002) 313-319.

    12. [12]

      [12] J.P. Santerre, K. Woodhouse, G. Laroche, R.S. Labow, Understanding the biodegradation of polyurethanes:from classical implants to tissue engineering materials, Biomaterials 26(2005) 7457-7470.

    13. [13]

      [13] B.F. d'Arlas, L. Rueda, K. de la Caba, I. Mondragon, A. Eceiza, Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI, Polym. Eng. Sci. 48(2008) 519-529.

    14. [14]

      [14] B. van Minnen, M.B.M. van Leeuwen, G. Kors, et al., In vivo resorption of a biodegradable polyurethane foam, based on 1,4-butanediisocyanate:a threeyear subcutaneous implantation study, J. Biomed. Mater. Res. A 85(2008) 972-982.

    15. [15]

      [15] J.H. de Groot, C.J. Spaans, F.G. Dekens, A.J. Pennings, On the role of aminolysis and transesterification in the synthesis of e-caprolactone and L-lactide based polyurethanes, Polym. Bull. 41(1998) 299-306.

    16. [16]

      [16] P.N. Shah, R.L. Manthe, S.T. Lopina, Y.H. Yun, Electrospinning of L-tyrosine polyurethanes for potential biomedical applications, Polymer 50(2009) 2281-2289.

    17. [17]

      [17] P. Król, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers, Prog. Mater. Sci. 52(2007) 915-1015.

    18. [18]

      [18] V. Kanyanta, A. Ivankovic, Mechanical characterisation of polyurethane elastomer for biomedical applications, J. Mech. Behav. Biomed. Mater. 3(2010) 51-62.

    19. [19]

      [19] C.J. Wu, A.K. Gaharwar, P.J. Schexnailder, G. Schmidt, Development of biomedical polymer-Silicate nanocomposites:a materials science perspective, Materials 3(2010) 2986-3005.

    20. [20]

      [20] M.D. Lang, J.Z. Bei, S.G. Wang, Synthesis and characterization of polycaprolactone/poly(ethylene oxide)/polylactide tri-component copolymers, J. Biomater. Sci. Polym. Ed. 10(1999) 501-512.

    21. [21]

      [21] P. Król, B. Pilch-Pitera, Phase structure and thermal stability of crosslinked polyurethane elastomers based on well-defined prepolymers, J. Appl. Polym. Sci. 104(2007) 1464-1474.

    22. [22]

      [22] Z.S. Hou, C.Y. Kan, Preparation and properties of thermoexpandable polymeric microspheres, Chin. Chem. Lett. 25(2014) 1279-1281.

    23. [23]

      [23] S.M. Li, Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids, J. Biomed. Mater. Res. 48(1999) 342-353.

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    3. [3]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    4. [4]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    5. [5]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    6. [6]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    7. [7]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    8. [8]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    9. [9]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    10. [10]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    11. [11]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    12. [12]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    13. [13]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    14. [14]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    15. [15]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    16. [16]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    17. [17]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    18. [18]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    19. [19]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    20. [20]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

Metrics
  • PDF Downloads(0)
  • Abstract views(633)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return