Citation: Saeid Jabbarzare, Majid Ghashang. Preparation of 2-amino-5,7-dimethoxy-4-aryl/alkyl-4H-chromene-3-carbonitriles using Na2O-Al2O3-P2O5 glass-ceramic system[J]. Chinese Chemical Letters, ;2015, 26(11): 1385-1388. doi: 10.1016/j.cclet.2015.07.010 shu

Preparation of 2-amino-5,7-dimethoxy-4-aryl/alkyl-4H-chromene-3-carbonitriles using Na2O-Al2O3-P2O5 glass-ceramic system

  • Corresponding author: Saeid Jabbarzare, 
  • Received Date: 22 April 2015
    Available Online: 24 June 2015

  • A highly efficient and environmentally benign protocol for the synthesis of 2-amino-5,7-dimethoxy-4- aryl/alkyl-4H-chromene-3-carbonitrile derivatives by one-pot three-component coupling reacting of aromatic aldehydes, malononitrile and 3,5-dimethoxy phenol under reflux condition has been developed in aqueous EtOH media using Na2O-Al2O3-P2O5 glass-ceramic system.
  • 加载中
    1. [1]

      [1] M. Curini, G. Cravotto, F. Epofano, G. Giannone, Chemistry and biological activity of natural and synthetic prenyloxycoumarins, Curr. Med. Chem. 13 (2006) 199-222.

    2. [2]

      [2] Y.M. Litvinov, A.M. Shestopalov, Synthesis, structure, chemical reactivity, and practical significance of 2-amino-4H-pyrans, Adv. Heterocycl. Chem. 103 (2011) 175-260.

    3. [3]

      [3] R.W. Desimone, K.S. Currie, S.A. Mitchell, J.W. Darrow, D.A. Pippin, Privileged structures: applications in drug discovery, Comb. Chem. High Throughput Screen. 7 (2004) 473-794.

    4. [4]

      [4] A.A. Patchett, R.P. Nargund, Chapter 26 Privileged structures - an update, Ann. Rep. Med. Chem. 35 (2000) 289-298.

    5. [5]

      [5] W. Kemnitzer, S. Kasibhatla, S. Jiang, et al., Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions, Bioorg. Med. Chem. Lett. 15 (2005) 4745-4751.

    6. [6]

      [6] T.C. McKee, R.W. Fuller, C.D. Covington, et al., New pyranocoumarins isolated from Calophyllum lanigerum and Calophyllum teysmannii, J. Nat. Prod. 59 (1996) 754-758.

    7. [7]

      [7] D.L. Galinis, R.W. Fuller, T.C. McKee, et al., Structure-activity modifications of the HIV-1 inhibitors (+)-calanolide A and (-)-calanolide B, J. Med. Chem. 39 (1996) 4507-4510.

    8. [8]

      [8] J.H.I.I. Cardellina, H.R. Bokesch, T.C. McKee, M.R. Boyd, Resolution and comparative anti-HIV evaluation of the enantiomers of calanolides A and B, Bioorg. Med. Chem. Lett. 5 (1995) 1011-1014.

    9. [9]

      [9] C. Garino, F. Bihel, N. Pietrancosta, et al., New 2-bromomethyl-8-substitutedbenzo[c]chromen-6-ones. Synthesis and biological properties, Bioorg. Med. Chem. Lett. 15 (2005) 135-138.

    10. [10]

      [10] G. Shanthi, P.T. Perumal, U. Rao, P.K. Sehgal, Synthesis and antioxidant activity of indolyl chromenes, Indian J. Chem. 48B (2009) 1319-1323.

    11. [11]

      [11] A.J. Johnson, R.A. Kumar, S.A. Rasheed, et al., Antipyretic, analgesic, anti-inflammatory and antioxidant activities of two major chromenes from Melicope lunuankenda, J. Ethnopharmacol. 130 (2010) 267.

    12. [12]

      [12] Y. Gao, W. Yang, D.M. Du, Efficient organocatalytic asymmetric synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives, Tetrahedron: Asymmetry 23 (2012) 339-344.

    13. [13]

      [13] G.A. Reynolds, K.H. Drexhage, New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers, Opt. Commun. 13 (1975) 222-225.

    14. [14]

      [14] H. Zollinger, Color Chemistry: Synthesis. Properties and Application of Organic Dyes and Pigments, 3rd ed., Verlag Helvetica Chimica Acta, Zurikh, 2003.

    15. [15]

      [15] G.P. Ellis, in: A. Weissberger, E.C. Taylor (Eds.), The Chemistry of Heterocyclic of Compounds. Chromenes, Harmones and Chromones, John Wiley, New York, 1977, pp. 11-139, Chapter II.

    16. [16]

      [16] M.G. Dekamin, M. Eslami, A. Maleki, Potassium phthalimide-N-oxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water, Tetrahedron 69 (2013) 1074-1085.

    17. [17]

      [17] S. Khaksar, A. Rouhollahpour, S. Mohammadzadeh Talesh, A facile and efficient synthesis of 2-amino-3-cyano-4H-chromenes and tetrahydrobenzo[b]pyrans using 2 2,2-trifluoroethanol as a metal-free and reusable medium, J. Fluor. Chem. 141 (2012) 11-15.

    18. [18]

      [18] D.Q. Shi, S.I. Zhang, Q.Y. Zhuang, X.S. Wang, Clean synthesis of benzo[h]chromene derivatives in water, Chin. J. Org. Chem. 23 (2003) 1419-1421.

    19. [19]

      [19] C. Lu, X.J. Huang, Y.Q. Li, M.Y. Zhou, W. Zheng, A one-pot multicomponent reaction for the synthesis of 2-amino-2-chromenes promoted by N,N-dimethylaminofunctionalized basic ionic liquid catalysis under solvent-free condition, Monatsh. Chem. 140 (2009) 45-47.

    20. [20]

      [20] J. Safari, L. Javadian, Ultrasound assisted the green synthesis of 2-amino-4H-chromene derivatives catalyzed by Fe3O4-functionalizednanoparticleswithchitosanas a novel and reusable magnetic catalyst, Ultrason. Sonochem. 22 (2015) 341-348.

    21. [21]

      [21] J. Safari, Z. Zarnegar, M. Heydarian, Practical, ecofriendly, and highly efficient synthesis of 2-amino-4H-chromenes using nanocrystalline MgO as a reusable heterogeneous catalyst in aqueous media, J. Taibah Univ. Sci. 7 (2013) 17-25.

    22. [22]

      [22] M. Ghashang, S.S. Mansoor, K. Aswin, Pentafluorophenylammonium triflate (PFPAT) catalysed facile construction of substituted chromeno[2 3-d]pyrimidinone derivatives and their antimicrobial, J. Adv. Res. 5 (2014) 209-218.

    23. [23]

      [23] M. Ghashang, S.S. Mansoor, K. Aswin, Thiourea dioxide: an efficient and reusable organocatalyst for the rapid one-pot synthesis of pyrano[4 3-b]pyran derivatives in water, Chin. J. Catal. 35 (2014) 127-133.

  • 加载中
    1. [1]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    4. [4]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    5. [5]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    6. [6]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    7. [7]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    8. [8]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    9. [9]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    10. [10]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    15. [15]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    19. [19]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    20. [20]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

Metrics
  • PDF Downloads(0)
  • Abstract views(783)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return