Citation: Firouzeh Nemati, Seyed Hasan Nikkhah, Ali Elhampour. An environmental friendly approach for the catalyst-free synthesis of highly substituted pyrazoles promoted by ultrasonic radiation[J]. Chinese Chemical Letters, ;2015, 26(11): 1397-1399. doi: 10.1016/j.cclet.2015.07.009 shu

An environmental friendly approach for the catalyst-free synthesis of highly substituted pyrazoles promoted by ultrasonic radiation

  • Corresponding author: Firouzeh Nemati, 
  • Received Date: 14 April 2015
    Available Online: 16 June 2015

  • A cost-effective, highly useful and eco-friendly procedure for the one-pot synthesis of highly substituted pyrazole derivatives has been developed via the reaction of various aldehydes, malononitrile and phenylhydrazine or 4-phenylthiosemicarbazide in PEG-400 and water at room temperature under ultrasound irradiation. Utilization of green solvents without a catalyst makes this methodology very interesting from economic and environmental perspectives. This method provides several advantages such as operational simplicity, use of accessible and economical starting materials and reduced environmental consequences.
  • 加载中
    1. [1]

      [1] S. Manfredini, R. Bazzanini, P.G. Baraldi, et al., Pyrazole-related nucleosides. 4. Synthesis and antitumor activity of some 1-tetrahydropyranyl-4-substituted pyrazoles, Anti-cancer Drug Des. 11 (1996) 193-204.

    2. [2]

      [2] A.A. Bekhit, H.T.Y. Fahmy, S.A.F. Rostom, A.M. Baraka, Design and synthesis of some substituted 1H-pyrazolyl-thiazolo[4,5-d]pyrimidines as anti-inflammatory- antimicrobial agents, Eur. J. Med. Chem. 38 (2003) 27-36.

    3. [3]

      [3] S.G. Alegaon, K.R. Alagawadi, M.K. Garg, K. Dushyant, D. Vinod, 1,3,4-Trisubstituted pyrazole analogues as promising anti-inflammatory agents, Bioorg. Chem. 54 (2014) 51-59.

    4. [4]

      [4] O.I. El-Sabbagh, M.M. Baraka, S.M. Ibrahim, et al., Synthesis and antiviral activity of new pyrazole and thiazole derivatives, Eur. J. Med. Chem. 44 (2009) 3746-3753.

    5. [5]

      [5] R. Sridhar, P.T. Perumal, S. Etti, et al., Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates, Bioorg. Med. Chem. Lett. 14 (2004) 6035-6040.

    6. [6]

      [6] G. Menozzi, L. Mosti, P. Fossa, F. Mattioli, M. Ghia, v-Dialkylaminoalkyl ethers of phenyl-(5-substituted 1-phenyl-1H-pyrazol-4-yl)methanols with analgesic and anti-inflammatory activity, J. Heterocycl. Chem. 34 (1997) 963-968.

    7. [7]

      [7] G.R. Bebernitz, G. Argentieri, B. Battle, et al., The effect of 1,3-diaryl-[1H]- pyrazole-4-acetamides on glucose utilization in ob/ob mice, J. Med. Chem. 44 (2001) 2601-2611.

    8. [8]

      [8] A.M. Mohamed, W.A. El-Sayed, M.A. Alsharari, et al., Anticancer activities of some newly synthesized pyrazole and pyrimidine derivatives, Arch. Pharm. Res. 36 (2013) 1055-1065.

    9. [9]

      [9] H.F. Zhang, Z.Q. Ye, G. Zhao, Enantioselective synthesis of functionalized fluorinated dihydropyrano [2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane- thiourea, Chin. Chem. Lett. 25 (2014) 535-540.

    10. [10]

      [10] D.V. Jawale, U.R. Pratap, J.R. Mali, R.A. Mane, Silica chloride catalyzed one-pot synthesis of fully substituted pyrazoles, Chin. Chem. Lett. 22 (2011) 1187- 1190.

    11. [11]

      [11] C. Wang, Y.H. Jiang, C.G. Yan, Convenient synthesis of spiro[indoline-3,4'- pyrano[2,3-c]pyrazole] and spiro[acenaphthyl-3,4'-pyrano[2,3-c]pyrazoles] via four-component reaction, Chin. Chem. Lett. 26 (2015) 889-893.

    12. [12]

      [12] Y. Li, C.E. Dong, Efficient synthesis of fused pyrazoles via simple cyclization of o-alkynylchalcones with hydrazine, Chin. Chem. Lett. 26 (2015) 623-626.

    13. [13]

      [13] F. Moeinpour, A. Khojastehnezhad, Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles as an efficient and green catalyst for the synthesis of pyrano[2,3-c]pyrazoles, Chin. Chem. Lett. 26 (2015) 575-579.

    14. [14]

      [14] M. Srivastava, P. Rai, J. Singh, J. Singh, Efficient iodine-catalyzed one pot synthesis of highly functionalised pyrazoles in water, New J. Chem. 38 (2014) 302-307.

    15. [15]

      [15] M. Srivastava, P. Rai, J. Singh, J. Singh, An environmentally friendlier approachionic liquid catalysed, water promoted and grinding induced synthesis of highly functionalised pyrazole derivatives, RSC Adv. 3 (2013) 16994-16998.

    16. [16]

      [16] H.A.H. Shamroukh, A.E. Rashad, E. Abdel-Megeid, H.S. Ali, M.M. Ali, Some pyrazolo[3,4-d] pyrimidine derivatives: synthesis and anticancer evaluation, Arch. Pharm. 347 (2014) 559-565.

    17. [17]

      [17] M. Tang, F.M. Zhang, Efficient one-pot synthesis of substituted pyrazoles, Tetrahedron 69 (2013) 1427-1433.

    18. [18]

      [18] Y. Gu, Multicomponent reactions in unconventional solvents: state of the art, Green Chem. 14 (2012) 2091-2128.

    19. [19]

      [19] S. Gaddam, H.R. Kasireddy, K. Konkala, et al., Synthesis of N-substituted-2- aminobenzothiazoles using nano copper oxide as a recyclable catalyst under ligand-free conditions, in reusable PEG-400 medium, Chin. Chem. Lett. 25 (2014) 732-736.

    20. [20]

      [20] J. Sindhu, H. Singh, J.M. Khurana, C. Sharma, K.R. Aneja, Multicomponent domino process for the synthesis of some novel 5-(arylidene)-3-((1-aryl-1H-1,2,3-triazol- 4-yl)methyl)-thiazolidine-2,4-diones using PEG-400 as an efficient reaction medium and their antimicrobial evaluation, Chin. Chem. Lett. 26 (2015) 50-54.

    21. [21]

      [21] F. Nemati, H. Kiani, A green and highly efficient protocol for catalyst-free Knoevenagel condensation and Michael addition of aromatic aldehydes with 1,3-cyclic diketones in PEG-400, Chin. J. Chem. 29 (2011) 2407-2410.

    22. [22]

      [22] F. Nemati, M.M. Hosseini, H. Kiani, Glycerol as a green solvent for efficient, onepot and catalyst free synthesis of 2,4,5-triaryl and 1,2,4,5-tetraaryl imidazole derivatives, J. Saudi Chem. Soc. (2013), http://dx.doi.org/10.1016/j.jscs.2013.02. 004.

    23. [23]

      [23] R. Cella, H.A. Stefani, Ultrasound in heterocycles chemistry, Tetrahedron 65 (2009) 2619-2641.

    24. [24]

      [24] Y. Zou, Y. Hu, H. Liu, D. Shi, Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] derivatives, ACS Comb. Sci. 14 (2012) 38-43.

    25. [25]

      [25] K.A. Kumar, P. Jayaroop, Synthesis, characterization and chelating properties of novel heterocyclic azo dyes containing ligand, Int. J. Pharm. Tech. Res. 5 (2014) 364-368.

    26. [26]

      [26] A. Hasaninejad, S. Firoozi, Catalyst-free, one-pot, three-component synthesis of 5-amino-1,3-aryl-1H-pyrazole-4-carbonitriles in green media, Mol. Divers. 17 (2013) 459-469.

    27. [27]

      [27] P.S. Bhale, S.B. Dongare, U.B. Chanshetti, Simple grinding, catalyst-free, one-pot, three-component synthesis of polysubstituted amino pyrazole, Res. J. Chem. Sci. 4 (2014) 16-21.

  • 加载中
    1. [1]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

    2. [2]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    3. [3]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    4. [4]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    5. [5]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    6. [6]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    12. [12]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    16. [16]

      Ruiyuan Xu Yuxin Wang Yuru Zhang Wanmei Li . Who Destroyed Snowflake Castle. University Chemistry, 2024, 39(9): 224-228. doi: 10.12461/PKU.DXHX202311056

    17. [17]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    18. [18]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    19. [19]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    20. [20]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

Metrics
  • PDF Downloads(0)
  • Abstract views(775)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return