Citation: Xiao-Hui Sun, Hai-Zhu Yu, Shu-Qi Pei, Zhi-Min Dang. Theoretical investigations on the thiol-thioester exchange steps of different thioesters[J]. Chinese Chemical Letters, ;2015, 26(10): 1259-1264. doi: 10.1016/j.cclet.2015.07.003 shu

Theoretical investigations on the thiol-thioester exchange steps of different thioesters

  • Corresponding author: Hai-Zhu Yu,  Zhi-Min Dang, 
  • Received Date: 9 April 2015
    Available Online: 10 June 2015

    Fund Project: We appreciate NSFC (No. 21202006) (No. 21202006)FRFCU (No. FRF-TP- 14-015A2) for financial supports and Super-computer Center of Shanghai and Shenzhen for technical supports. (No. FRF-TP- 14-015A2)

  • As the rate-determining step in native chemical ligation reactions, the thiol-thioester exchange step is important in determining the efficiency of the ligations of peptides. In the present study, systematic theoretical calculations were carried out on the relationships between the structure of different thioesters and the free energy barriers of the thiol-thioester exchange step. According to the calculation results, the thiol-thioester exchange step is disfavored by the steric hindrance around the carbonyl center, while the electronic effect (i.e. conjugation and hyper-conjugation effects) becomes important when the steric hindrance is insignificant.
  • 加载中
    1. [1]

      [1] P.E. Dawson, T.W. Muir, L.C. Lewis, S.B.H. Kent, Synthesis of proteins by native chemical ligation, Science 266(1994) 776-779.

    2. [2]

      [2] P. Thapa, R.Y. Zhang, V. Menon, et al., Native chemical ligation:a boon to peptide chemistry, Molecules 19(2014) 14461-14483.

    3. [3]

      [3] S. Stanchev, Z. Zawada, L. Moninc ová, et al., Synthesis of lucifensin by native chemical ligation and characteristics of its isomer having different disulfide bridge pattern, J. Pept. Sci. 20(2014) 725-735.

    4. [4]

      [4] T. Nakamura, A. Shigenaga, K. Sato, et al., Examination of native chemical ligation using peptidyl prolyl thioesters, Chem. Commun. 50(2014) 58-60.

    5. [5]

      [5] H. Kawashima, T. Kuruma, M. Yamashita, et al., Synthesis of an O-acyl isopeptide by using native chemical ligation in an aqueous solvent system, J. Pept. Sci. 20(2014) 361-365.

    6. [6]

      [6] J.S. Zheng, S. Tang, Y.K. Qi, et al., Chemical synthesis of proteins using peptide hydrazides as thioester surrogates, Nat. Protoc. 8(2013) 2483.

    7. [7]

      [7] H. van de Langemheen, M. van Hoeke, H.C. Quarles van Ufford, et al., Scaffolded multiple cyclic peptide libraries for protein mimics by native chemical ligation, Org. Biomol. Chem. 12(2014) 4471-4478.

    8. [8]

      [8] Y.M. Li, Y.T. Li, M. Pan, et al., Irreversible site-specific hydrazinolysis of proteins by use of sortase, Angew. Chem. Int. Ed. 53(2014) 2198-2202.

    9. [9]

      [9] C.T.T. Wong, C.L. Tung, X.C. Li, Synthetic cysteine surrogates used in native chemical ligation, Mol. BioSyst. 9(2013) 826-833.

    10. [10]

      [10] Q.Q. He, G.M. Fang, L. Liu, Design of thiol-containing amino acids for native chemical ligation at non-Cys sites, Chin. Chem. Lett. 24(2013) 265-269.

    11. [11]

      [11] L.R. Malins, N.J. Mitchell, R.J. Payne, Peptide ligation chemistry at selenol amino acids, J. Pept. Sci. 20(2014) 64-77.

    12. [12]

      [12] R.E. Thompson, X.Y. Liu, N. Alonso-García, et al., Trifluoroethanethiol:an additive for efficient one-pot peptide ligation-desulfurization chemistry, J. Am. Chem. 136(2014) 8161.

    13. [13]

      [13] J.S. Zheng, H.N. Chang, F.L. Wang, L. Liu, Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation, J. Am. Chem. Soc. 133(2011) 11080.

    14. [14]

      [14] L.E. Canne, S.J. Bark, S.B.H. Kent, Extending the applicability of native chemical ligation, J. Am. Chem. Soc. 118(1996) 5891-5896.

    15. [15]

      [15] P.E. Dawson, M.J. Churchill, M.R. Ghadiri, S.B.H. Kent, Modulation of reactivity in native chemical ligation through the use of thiol additives, J. Am. Chem. Soc. 119(1997) 4325-4329.

    16. [16]

      [16] C. Wang, Q.X. Guo, Y. Fu, Theoretical analysis of the detailed mechanism of native chemical ligation reactions, Chem. Asian J. 6(2011) 1241-1251.

    17. [17]

      [17] Q. Zhang, H.Z. Yu, J. Shi, Orbital interactions in native chemical ligation reaction of proline thioesters, Acta. Phys. Chim. Sin. 29(2013) 2321-2331.

    18. [18]

      [18] D.H. Yu, J.N. Shao, R.X. He, M. Li, Mechanism of trifluoromethylation reactions with well-defined NHC copper trifluoromethyl complexes and iodobenzene:a computational exploration, Chin Chem. Lett. 26(2015) 564.

    19. [19]

      [19] X.N. Ke, C.M. Schienebeck, C.C. Zhou, X.F. Xu, W.P. Tang, Mechanism and reactivity of rhodium-catalyzed intermolecular[5+1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO:a computational study, Chin. Chem. Lett. 26(2015) 730.

    20. [20]

      [20] E.C.B. Johnson, S.B.H. Kent, Insights into the mechanism and catalysis of the native chemical ligation reaction, J Am. Chem. Soc. 128(2006) 6640-6646.

    21. [21]

      [21] H.Z. Yu, F. Fu, L. Zhang, et al., Accurate predictions of C-SO2R bond dissociation enthalpies using density functional theory methods, Phys. Chem. Chem. Phys. 16(2014) 20964-20970.

    22. [22]

      [22] H.Z. Yu, Y.M. Yang, L. Zhang, Z.M. Dang, G.H. Hu, Quantum-chemical predictions of pKa's of thiols in DMSO, J. Phys. Chem. A 118(2014) 606-622.

    23. [23]

      [23] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2013.

    24. [24]

      [24] T.M. Hackeng, J.H. Griffin, P.E. Dawson, Protein synthesis by native chemical ligation:expanded scope by using straightforward methodology, Proc. Natl. Acad. Sci. U. S. A. 96(1999) 10068-10073.

    25. [25]

      [25] J.X. Wang, G.M. Fang, Y. He, et al., Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis, Angew. Chem. Int. Ed. 54(2015) 2194.

    26. [26]

      [26] S.B. Pollock, S.B.H. Kent, An investigation into the origin of the dramatically reduced reactivity of peptide-prolyl-thioesters in native chemical ligation, Chem. Commun. 47(2011) 2342-2344.

    27. [27]

      [27] C.Z. Sun, G. Luo, S. Neravetla, S.S. Ghosh, B. Forood, Native chemical ligation derived method for recombinant peptide/protein C-terminal amidation, Bioorg. Med. Chem. Lett. 23(2013) 5203-5208.

    28. [28]

      [28] J.S. Zheng, S. Tang, Y.C. Huang, L. Liu, Development of new thioester equivalents for protein chemical synthesis, Acc. Chem. Res. 46(2013) 2475.

    29. [29]

      [29] T. Küh, M. Chen, K. Teichmann, A. Stark, D. Imhof, Ionic liquid 1-ethyl-3-methylimidazolium acetate:an attractive solvent for native chemical ligation of peptides, Tetrahedron Lett. 55(2014) 3658-3662.

  • 加载中
    1. [1]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    2. [2]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    3. [3]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    4. [4]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    5. [5]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    6. [6]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    7. [7]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    8. [8]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    9. [9]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    10. [10]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    11. [11]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    12. [12]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    13. [13]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    14. [14]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    15. [15]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    16. [16]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    20. [20]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

Metrics
  • PDF Downloads(0)
  • Abstract views(763)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return