Citation: Xin-Dong Jiang, Hai-Feng Yu, Jiu-Li Zhao, Chang-Liang Sun, Ying Xie, Lin-Jiu Xiao. A colorimetric chemosensor based on new water-soluble PODIPY dye for Hg2+ detection[J]. Chinese Chemical Letters, ;2015, 26(10): 1241-1245. doi: 10.1016/j.cclet.2015.07.002 shu

A colorimetric chemosensor based on new water-soluble PODIPY dye for Hg2+ detection

  • Corresponding author: Xin-Dong Jiang,  Chang-Liang Sun, 
  • Received Date: 6 May 2015
    Available Online: 16 June 2015

    Fund Project: This work was supported by the Public Research Foundation of Liaoning Province for the Cause of Science (No. 2014003009) (No. 2014003009) the Foundation of the Education Department of Henan Province for Science and Technology Research Projects (No. 13A150046) (No. 2013304007)

  • The phosphorus-containing PODIPY 1 as a chemosensor can detect Hg2+ by a color change from pink to violet red without the use of any instrumentation. PODIPY 1 was selective to Hg2+ with a remarkable absorption change, and addition of other relevant metal ions caused almost no absorption change. The new PODIPY dye 1 was sensitive to various concentrations of Hg2+. The energy gap between the HOMO and LUMO of the metal complex 1-Hg2+ is smaller than that of chemosensor 1, which is in good agreement with the red shift in the absorption observed upon treatment of 1 with Hg2+. The 1-based test strips were easily fabricated and low-cost, useful in practical and efficient Hg2+ test kits.
  • 加载中
    1. [1]

      [1] E.M. Nolan, S.J. Lippard, Tools and tactics for the optical detection of mercuric ion, Chem. Rev. 108(2008) 3443-3480.

    2. [2]

      [2] R. Joseph, C.P. Rao, Ion and molecular recognition by lower rim 1, 3-di-conjugates of calix[4] arene as receptors, Chem. Rev. 111(2011) 4658-4702.

    3. [3]

      [3] H.H. Harris, I.J. Pickering, G.N. George, The chemical form of mercury in fish, Science 301(2003) 1203-11203.

    4. [4]

      [4] D.W. Domaille, E.L. Que, C.J. Chang, Synthetic fluorescent sensors for studying the cell biology of metals, Nat. Chem. Biol. 4(2008) 168-175.

    5. [5]

      [5] Mercury Update:Impact on Fish Advisories; EPA Fact Sheet EPA-823-F-01-001, Environmental Protection Agency, Office of Water, Washington, DC, 2001.

    6. [6]

      [6] Z. Han, B. Zhu, T. Wu, et al., A fluorescent probe for Hg2+ sensing in solutions and living cells with a wide working pH range, Chin. Chem. Lett. 25(2014) 73-76.

    7. [7]

      [7] Z.Q. Yan, S.Y. Guang, H.Y. Xu, X.Y. Liu, An effective real-time colorimeteric sensor for sensitive and selective detection of cysteine under physiological conditions, Analyst 136(2011) 1916-1921.

    8. [8]

      [8] J.S. Lee, M.S. Han, C.A. Mirkin, Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles, Angew. Chem. Int. Ed. 46(2007) 4093-4096.

    9. [9]

      [9] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, Heidelberg, 2006.

    10. [10]

      [10] F. Bergstroem, I. Mikhalyov, P. Haeggloef, et al., Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology, J. Am. Chem. Soc. 124(2002) 196-204.

    11. [11]

      [11] X.D. Jiang, J. Zhang, T. Furuyama, W. Zhao, Development of mono- and di-AcO substituted BODIPYs on the boron center, Org. Lett. 14(2012) 248-251.

    12. [12]

      [12] X.D. Jiang, D. Xi, J. Zhao, et al., A styryl-containing aza-BODIPY as near-infrared dye, RSC Adv. 4(2014) 60970-60973.

    13. [13]

      [13] P. Shi, X.D. Jiang, R. Gao, et al., Synthesis and application of Vis/NIRdialkylaminophenylbuta-1,3-dienyl borondipyrromethene dyes, Chin. Chem. Lett.26(2015) 834-838.

    14. [14]

      [14] X.D. Jiang, J. Zhao, D. Xi, et al., A new water-soluble phosphorus-dipyrromethene and phosphorus-azadipyrromethene dye:PODIPY/aza-PODIPY, Chem. Eur. J. 21(2015) 6079-6082.

    15. [15]

      [15] A. Loudet, K. Burgess, BODIPY dyes and their derivatives:syntheses and spectroscopic properties, Chem. Rev. 107(2007) 4891-4932.

    16. [16]

      [16] L. Yuan, W. Lin, K. Zheng, L. He, W. Huang, Far-red to near infrared analyteresponsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging, Chem. Soc. Rev. 42(2013) 622-661.

    17. [17]

      [17] Y. Yang, Q. Zhao, W. Feng, F. Li, Luminescent chemodosimeters for bioimaging, Chem. Rev. 113(2013) 192-270.

    18. [18]

      [18] S.-B. Yi, H.-F. Gao, Q. Li, Y.-F. Ye, et al., Synthesis and self-assembly behavior of 2,5-diphenylethynyl thiophene based bolaamphiphiles, Chin. Chem. Lett. 26(2015)872-876.

    19. [19]

      [19] P.-Z. Chen, H.-R. Zheng, L.-Y. Niu, et al., A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY, Chin. Chem. Lett. 6(2015) 631-635.

    20. [20]

      [20] M. Sun, H. Nie, J. Yao, Y. Zhong, Bis-triarylamine with a cyclometalated diosmium bridge:a multi-stage redox-active system, Chin. Chem. Lett. 6(2015) 649-652.

    21. [21]

      [21] Y. Wu, C. Cheng, L. Jiao, et al., β-Thiophene-fused BF2-azadipyrromethenes as near-infrared dyes, Org. Lett. 16(2014) 748-751.

    22. [22]

      [22] K. Huang, H. Yang, Z. Zhou, et al., A highly selective phosphorescent chemodosimeter for cysteine and homocysteine based on platinum(II) complexes, Inorg. Chim. Acta 362(2009) 2577-2580.

    23. [23]

      [23] M. Chen, X. Lv, Y. Liu, et al., An 2-(20-aminophenyl)benzoxazole-based off-on fluorescent chemosensor for Zn2+ in aqueous solution, Org. Biomol. Chem. 9(2011) 2345-2349.

    24. [24]

      [24] X. Chen, T.H. Pradhan, F. Wang, J.S. Kim, J.Y. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112(2012) 1910-1956.

    25. [25]

      [25] M.N. Elizabeth, J.L. Stephen, Turn-on fluorescent sensor for the selective detection of mercuric ion in aqueous media, J. Am. Chem. Soc. 125(2003) 14270-14271.

    26. [26]

      [26] H.G. Brittain, Physical Characterization of Pharmaceutical Solids, Marcel Dekker, New York, 1995.

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    7. [7]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    8. [8]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    9. [9]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    10. [10]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    11. [11]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    12. [12]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    13. [13]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    14. [14]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    15. [15]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    18. [18]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    19. [19]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    20. [20]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

Metrics
  • PDF Downloads(0)
  • Abstract views(740)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return