Citation:
Chi Fang, Jian-Jun Dai, Hua-Jian Xu, Qing-Xiang Guo, Yao Fu. Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature[J]. Chinese Chemical Letters,
;2015, 26(10): 1265-1268.
doi:
10.1016/j.cclet.2015.07.001
-
An iron(III)-catalyzed selective oxidation of 5-HMF to 2, 5-DFF in air at room temperature was developed. This approach gives 2, 5-DFF with good selectivity and yields. Additionally, a two-step process was developed for the oxidation of 2, 5-DFF to 2, 5-FDCA at remarkably high substrate concentrations. This work demonstrates unequivocally the great potential of iron as a cheap and earth-abundant catalyst for the development of new protocols for the conversion of biomass to value-added chemicals.
-
Keywords:
- Iron,
- Biomass,
- Oxidation,
- Platform molecules,
- Sustainable chemistry
-
-
-
[1]
[1] (a) A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107(2007) 2411-2502;
-
[2]
(b) J.N. Chheda, G.W. Huber, J.A. Dumesic, Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals, Angew. Chem. Int. Ed. 46(2007) 7164-7183;
-
[3]
(c) P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41(2012) 1538-1558;
-
[4]
(d) D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals, Chem. Soc. Rev. 41(2012) 8075-8098;
-
[5]
(e) M. Besson, P. Gallezot, C. Pinel, Conversion of biomass into chemicals over metal catalysts, Chem. Rev. 114(2014) 1827-1870.
-
[6]
[2] (a) Y. Roman-Leshkov, J.N. Chheda, J.A. Dumesic, Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science 312(2006) 1933-1937;
-
[7]
(b) H.B. Zhao, J.E. Holladay, H. Brown, et al.,Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316(2007) 1597-1600;
-
[8]
(c) G. Yong, Y.G. Zhang, J.Y. Ying, Efficient catalytic systemfor the selective production of 5-hydroxymethylfurfural from glucose and fructose, Angew. Chem. Int. Ed. 47(2008) 9345-9348;
-
[9]
(d) S.Q. Hu, Z.F. Zhang, B.X. Han, Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common lewis acid SnCl4 in an ionic liquid, Green Chem. 11(2009) 1746-1749;
-
[10]
(e) M. Mascal, E.B. Nikitin, High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural, Green Chem. 12(2010) 370-373;
-
[11]
(f) T. Stahlberg, S.R. Rodriguez, A. Riisager, Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquidswith boric acid as a promoter, Chem. Eur. J. 17(2011) 1456-1464;
-
[12]
(g) F. Liu, J. Barrault, K. Vigier, F. Jerome, Dehydration of highly concentrated solutions of fructose to 5-hydroxymethylfurfural in a cheap and sustainable choline chloride/carbon dioxide system, ChemSusChem 5(2012) 1223-1226;
-
[13]
(h) F.R. Tao, C. Zhuang, Y.Z. Cui, et al., Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids, Chin. Chem. Lett. 25(2014) 757-761.
-
[14]
[3] (a) J.B. Binder, R.T. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals, J. Am. Chem. Soc. 131(2009) 1979-1985;
-
[15]
(b) W.H. Peng, Y.Y. Lee, C. Wu, et al., Acid-base bi-functionalized, large-pored mesoporous silica nanoparticlesfor cooperative catalysis of one-pot cellulose-to-HMF conversion, J. Mater. Chem. 22(2012) 23181-23185.
-
[16]
[4] (a) C. Moreau, M.N. Belgacem, A. Gandini, Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers, Top. Catal. 27(2004) 11-30;
-
[17]
(b) R.J. Putten, J.C. Waal, E. Jong, et al., Hydroxymethylfurfural, a versatile platform chemical made from renewable resources, Chem. Rev. 113(2013) 1499-1597.
-
[18]
[5] K.T. Hopkins, W.D. Wilson, B.C. Bendan, et al., Extended aromatic furan amidino derivatives as anti-pneumocystis carinii agents, J. Med. Chem. 41(1998) 3872-3878.
-
[19]
[6] M. Del Poeta, W.A. Schell, C.C. Dykstra, et al., Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agent, Antimicrob. Agents Chemother. 42(1998) 2495-2502.
-
[20]
[7] D.T. Richter, T.D. Lash, Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the 4+1 synthesis of sapphyrins, Tetrahedron Lett. 40(1999) 6735-6738.
-
[21]
[8] (a) O.W. Howarth, G.G. Morgan, V. McKee, et al., Conformational choice in disilver cryptates; a 1H NMR and structural study, J. Chem. Soc., Dalton Trans. 12(1999) 2097-2102;
-
[22]
(b) Z. Hui, A. Gandini, Polymeric schiff bases bearing furan moieties, Eur. Polym. J. 28(1992) 1461-1469;
-
[23]
(c) M. Baumgarten, N. Tyutyulkov, Nonclassical conducting polymers:new approaches to organic metals, Chem. Eur. J. 4(1998) 987-989;
-
[24]
(d) A.S. Amarasekara, D. Green, L.D. Williams, Renewable resources based polymers:synthesis and characterization of 2,5-diformylfuran-urea resin, Eur. Polym. J. 45(2009) 595-598.
-
[25]
[9] (a) W. Partenheimer, V.V. Grushin, Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal/bromide catalysts, Adv. Synth. Catal. 343(2001) 102-111;
-
[26]
(b) M. Krçger, K.D. Vorlop, A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose, Top. Catal. 13(2000) 237-242.
-
[27]
[10] (a) C. Carlini, P. Patrono, A.M.R. Galletti, et al., Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate, Appl. Catal. A:Gen. 289(2005) 197-204;
-
[28]
(b) O.C. Navarro, A.C. Canos, S.I. Chornet, Chemicals from biomass:aerobic oxidation of 5-hydroxymethyl-2-furaldehyde into diformylfurane catalyzed by immobilized vanadyl-pyridine complexes on polymeric and organofunctionalized mesoporous support, Top. Catal. 52(2009) 304-314.
-
[29]
[11] J.P. Ma, Z.T. Du, J. Xu, et al., Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material, ChemSusChem 4(2011) 51-54.
-
[30]
[12] T.S. Hansen, I. Sádaba, A. Riisager, Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions, Appl. Catal. A:Gen. 456(2013) 44-50.
-
[31]
[13] Z.Z. Yang, J. Deng, T. Pan, et al., A one-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2, Green Chem. 14(2012) 2986-2989.
-
[32]
[14] (a) J.F. Nie, J.H. Xie, H.C. Liu, J. Catal, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts 301(2013) 83-91;
-
[33]
(b) A. Takagaki, M. Takahashi, S. Nishimura, et al., One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts, ACS Catal. 1(2011) 1562-1565.
-
[34]
[15] B. Saha, S. Dutta, M.M. Abu-Omar, Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts, Catal. Sci. Technol. 2(2012) 79-81.
-
[35]
[16] A.S. Amarasekara, D. Green, E. McMillan, Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)-salen catalysts, Catal. Commun. 9(2008) 286-288.
-
[36]
[17] (a) N.T. Le, P. Lakshmanan, K. Cho, et al., Selective oxidation of 5-hydroxymethyl-2-furfural into 2,5-diformylfuran over VO2+ and Cu2+ ions immobilized on sulfonated carbon catalysts, Appl. Catal. A:Gen. 464(2013) 305-312;
-
[37]
(b) I. Sádaba, Y.Y. Gorbanev, A. Riisager, Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, ChemCatChem 5(2013) 284-293.
-
[38]
[18] S.M. Ma, J.X. Liu, S.H. Li, et al., Development of a general and practical iron nitrate/TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes/ketones:catalysis with table salt, Adv. Synth. Catal. 353(2011) 1005-1017.
-
[39]
[19] E.W. Abel, F.G.A. Stone, G. Wilkinson, Comprehensive Organometallic Chemistry II, vol. 7, Pergamon, 1995, pp. 78-79.
-
[40]
[20] T. Werby, G. Petersen, Top Value-Added Chemicals from Biomass, vol. 1, Pacific Northwest National Laboratory, 2004p. 27.
-
[41]
[21] (a) J.P. Ma, Y. Pang, M. Wang, et al., The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials, J. Mater. Chem. 22(2012) 3457-3461;
-
[42]
(b) J.P. Ma, X.F. Yu, J. Xu, Y. Pang, Synthesis and crystallinity of poly (butylene 2, 5-furandicarboxylate), Polymer 53(2012) 4145-4151.
-
[43]
[22] (a) E. Taarning, I.S. Nielsen, K. Egeblad, et al., Chemicals from renewables:aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts, Chem-SusChem 1(2008) 75-78;
-
[44]
(b) O. Casanova, S. Iborra, A. Corma, Biomass into chemicals:aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts, ChemSusChem 2(2009) 1138-1144;
-
[45]
(c) M.A. Lilga, R.T. Hallen, M. Gray, Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF), Top. Catal. 53(2010) 1264-1269;
-
[46]
(d) S.E. Davis, L.R. Houk, E.C. Tamargo, et al., Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts, Catal. Today 160(2011) 55-60;
-
[47]
(e) S.E. Davis, B.N. Zope, R.J. Davis, On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts, Green Chem. 14(2012) 143-147;
-
[48]
(f) J.M. Gallo, D.M. Alonso, J.A. Dumesic, Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents, Green Chem. 15(2013) 85-90;
-
[49]
(g) J. Cai, H. Ma, Q. Song, Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions, Chem. Eur. J. 19(2013) 14215-14223;
-
[50]
(h) G.S. Yi, S.P. Teong, Y.G. Zhang, Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic acid, Chem-SusChem 7(2014) 2131-2137; (i) S. Siankevich, G. Savoglidis, P.J. Dyson, A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions, J. Catal. 315(2014) 67-74.
-
[1]
-
-
-
[1]
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056
-
[2]
Xuexia Lin , Yihui Zhou , Jiafu Hong , Xiaofeng Wei , Bin Liu , Chong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835
-
[3]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[4]
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
-
[5]
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
-
[6]
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
-
[7]
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
-
[8]
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
-
[9]
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
-
[10]
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
-
[11]
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670
-
[12]
Zhongsen Wang , Lijun Qiu , Yunhua Huang , Meng Zhang , Xi Cai , Fanyu Wang , Yang Lin , Yanbiao Shi , Xiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195
-
[13]
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
-
[14]
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200
-
[15]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[16]
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
-
[17]
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
-
[18]
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
-
[19]
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
-
[20]
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(735)
- HTML views(1)