Citation: Zhuo Li, Li Wang, Yu-Hong Ma, Wan-Tai Yang. A facile method to prepare polypropylene/poly(butyl acrylate) alloy via water-solid phase suspension grafting polymerization[J]. Chinese Chemical Letters, ;2015, 26(11): 1351-1354. doi: 10.1016/j.cclet.2015.06.018 shu

A facile method to prepare polypropylene/poly(butyl acrylate) alloy via water-solid phase suspension grafting polymerization

  • Corresponding author: Wan-Tai Yang, 
  • Received Date: 6 May 2015
    Available Online: 17 June 2015

  • Polypropylene/poly(butyl acrylate) alloy is produced by water-solid phase suspension grafting polymerization with a submicrometer microdomain where graft polymerization occurs within micropores of polypropylene particles prepared by reactor granule technology (RGT). The results show that the grafting percentage (GP) of butyl acrylate (BA) increases with the increase of the monomer concentration,which could reach 32.6% while the grafting efficiency (GE) is up to 98%. The addition of the crosslinking agent, triethylene glycol diacrylate (TEGDA), could improve GP up to 36.3%. Transmission electron microscopic (TEM) micrographs demonstrate that PBA microdomains distributed in PP matrix increase in size less than 500 nm. Moreover, TEM images show that the grafting phase exhibits a singlephase behavior with the addition of TEGDA, which implies that the ratio of graft copolymer increased.
  • 加载中
    1. [1]

      [1] J. Wang, D.F. Wang, W. Du, E.G. Zou, Q. Dong, Synthesis of functional polypropylene via solid-phase grafting soft vinyl monomer and its mechanism, J. Appl. Polym. Sci. 113 (2009) 1803-1810.

    2. [2]

      [2] X.M. Tan, Y.S. Xu, N. Cai, G.W. Jia, Polypropylene/silica nanocomposites prepared by in-situ melt ultrasonication, Polym. Compos. 30 (2009) 835-840.

    3. [3]

      [3] Y.N. Ye, P.Y. Li, Y.G. Shangguan, et al., A convenient, highly-efficient method for preparation of hydroxyl-terminated isotactic poly (propylene) and functional diblock copolymer, Chin. Chem. Lett. 25 (2014) 596-600.

    4. [4]

      [4] X.L. Jiang, Y.X. Zhang, Study of the structure and the mechanical properties of dynamically cured PP/MAH-g-SEBS/epoxy blends, Chin. Chem. Lett. 20 (2009) 877-880.

    5. [5]

      [5] D. Wang, X.M. Xie, J. Jow, H.Y. Chen, S.-Y. Lai, Styrene-assisted melt free-radical grafting of pentaerythritol triacrylate onto polypropylene and its crystallization behavior, J. Appl. Polym. Sci. 108 (2008) 1737-1743.

    6. [6]

      [6] X.D. Xu, L.F. Zhang, J. Zhou, et al., Thermal behavior of polypropylene-g-glycidyl methacrylate prepared by melt grafting, J. Macromol. Sci. B Phys. 54 (2015) 32-44.

    7. [7]

      [7] S. Zhou, S.C. Zhao, Z. Xin, Preparation and foamability of high melt strength polypropylene based on grafting vinyl polydimethylsiloxane and styrene, Polym. Eng. Sci. 55 (2015) 251-259.

    8. [8]

      [8] F.Q. Yin, Q.H. Chen, J.H. Lin, Y. Deng, X.G. Mao, Effect of different peroxide initiators on the reaction extrusion of polypropylene-graft-cardanol and its compatibilization on PP/PC, J. Polym. Res. 21 (2014) 411.

    9. [9]

      [9] Q.H. Cheng, Z.X. Lü, H.J. Byrne, Synthesis of a maleic anhydride grafted polypropylene- butadiene copolymer and its application in polypropylene/styrene-butadiene- styrene triblock copolymer/organophilic montmorillonite composites as a compatibilizer, J. Appl. Polym. Sci. 114 (2009) 1820-1827.

    10. [10]

      [10] X. Xu, H.N. Xiao, Y. Guan, et al., Permanent antistatic polypropylene based on polyethylene wax/polypropylene wax-grafting sodium acrylate, J. Appl. Polym. Sci. 127 (2013) 959-966.

    11. [11]

      [11] F.L. Sun, Z.S. Fu, Q.T. Deng, Z.Q. Fan, Solid-state graft polymerization of styrene in spherical polypropylene granules in the presence of TEMPO, J. Appl. Polym. Sci. 112 (2009) 275-282.

    12. [12]

      [12] Y.Y. Rui, S.S. Chen, W.Q. Yin, et al., Graft copolymeriztion of glycidyl methacrylate/ styrene onto polypropylene in solid state,Adv.Mater. Res. 652-654 (2013) 418-422.

    13. [13]

      [13] G.L. Yang, C.Y. Zhang, L.C. Tan, X.H. Zhang, The Effect of specific surface area on the solid grafting reaction of maleic anhydride-grafted polypropylene, Adv. Mater. Res. 781-784 (2013) 385-389.

    14. [14]

      [14] H.Y. Wang, C.Y. Guo, J.Y. Dong, Catalytic synthesis and characterization of welldefined polypropylene graft copolymers, Catal. Commun. 10 (2008) 61-67.

    15. [15]

      [15] Q. Zhou, M.X. Li, X.H. Yao, et al., Preparation of polypropylene chelating fibers by quenching pretreatment and suspension grafting and their Pb2+ adsorption ability, Fiber Polym. 15 (2014) 2238-2246.

    16. [16]

      [16] P. Galli, J.C. Haylock, Advances in Ziegler-Natta polymerization-unique polyolefin copolymers, alloys and blends made directly in the reactor, Macromol. Symp. 63 (1992) 19-54.

    17. [17]

      [17] G. Cecchin, G. Morini, A. Pelliconi, Polypropene product innovation by reactor granule technology, Macromol. Symp. 173 (2001) 195-210.

    18. [18]

      [18] P. Galli, G. Vecellio, Polyolefins: the most promising large-volume materials for the 21st century, J. Polym. Sci. A Polym. Chem. 42 (2004) 396-415.

    19. [19]

      [19] P. Galli, The reactor granule technology: the ultimate expansion of polypropylene properties? J. Macromol. Sci. A Pure Appl. Chem. 36 (1999) 1561-1586.

    20. [20]

      [20] P. Galli, The reactor granule technology: a revolutionary approach to polymer blends and alloys, Macromol. Symp. 78 (1994) 269-284.

    21. [21]

      [21] Z. Li, Y.H. Ma, W.T. Yang, A facile, green, versatile protocol to prepare polypropylene- g-poly(methyl methacrylate) copolymer by water-solid phase suspension grafting polymerization using the surface of reactor granule technology polypropylene granules as reaction loci, J. Appl. Polym. Sci. 129 (2013) 3170-3177.

    22. [22]

      [22] L. Yu, Y. He, L. Bin, F. Yue'e, Study of radiation-induced graft copolymerization of butyl acrylate onto chitosan in acetic acid aqueous solution, J. Appl. Polym. Sci. 90 (2003) 2855-2860.

    23. [23]

      [23] T.Q. Liu, S.J. Jia, T. Kowalewski, et al., Grafting poly (n-butyl acrylate) from a functionalized carbon black surface by atom transfer radical polymerization, Langmuir 19 (2003) 6342-6345.

    24. [24]

      [24] H. Deng, K. Soga, Isotactic polymerization of tert-butyl acrylate with chiral zirconocene, Macromolecules 29 (1996) 1847-1848.

  • 加载中
    1. [1]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

Metrics
  • PDF Downloads(0)
  • Abstract views(804)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return