Citation: Hao-Ran Qu, Zi-You Zhang, Nan Wang, Qian Sun, Shan-Shan Liu, Wei-Bing Zhang, Jun-Hong Qian. Colorimetric and fluorimetric detection of cysteine: Unexpected Michael addition-elimination reaction[J]. Chinese Chemical Letters, ;2015, 26(10): 1249-1254. doi: 10.1016/j.cclet.2015.06.016 shu

Colorimetric and fluorimetric detection of cysteine: Unexpected Michael addition-elimination reaction

  • Corresponding author: Jun-Hong Qian, 
  • Received Date: 25 February 2015
    Available Online: 4 June 2015

    Fund Project: This work was financially supported by National 973 Program (No. 2011CB910403) (No. 2011CB910403) Shanghai Municipal Natural Science Foundation (No. 15ZR1409000) (No. 15ZR1409000)the open fund of Shanghai Key Laboratory of Chemical Biology (No. SKLCB-2013-03). (No. SKLCB-2013-03)

  • The synthesis of three isomers based on Michael addition mechanism for the detection of sulfurcontaining species in aqueous solution is described. These compounds are constructed by conjugating an enone to a coumarin fluorophore. A substituted-phenyl (o, m, or p-) was appended at the carbonyl carbon to adjust the reactivity. The experimental results showed that (E)-7-(diethylamino)-3-(3-(3-hydroxyphenyl)-3-oxoprop-1-en-1-yl)-2H-chromen-2-one (m-QPS) and (E)-7-(diethylamino)-3-(3-(4-hydroxyphenyl)-3-oxoprop-1-en-1-yl)-2H-chromen-2-one (p-QPS) barely react with sulfur-containing nucleophiles, while (E)-7-(diethylamino)-3-(3-(2-hydroxyphenyl)-3-oxoprop-1-en-1-yl)-2H-chromen-2-one (o-QPS) exhibited a fast response toward sulfite, sulfide and thiols in DMSO/phosphate buffer (2:1). The above results are probably due to the intramolecular H-bonding activated Michael addition. More interestingly, cysteine triggered unusual photophysical responses of o-QPS:the original absorption (488 nm) and emission peaks (573 nm) underwent significant blue shifts initially and then recovered, which might be caused by the Michael addition and elimination reaction, respectively.
  • 加载中
    1. [1]

      [1] Z. Abedinzadeh, Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest, Can. J. Physiol. Pharmacol. 79(2001) 166-170.

    2. [2]

      [2] J.W. Calvert, S. Jha, S. Gundewar, et al., Hydrogen sulfide mediates cardioprotection through Nrf2 signaling, Circ. Res. 105(2009) 365-374.

    3. [3]

      [3] S.C. Gupta, J.H. Kim, S. Prasad, B.B. Aggarwal, Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals, Cancer Metastasis Rev. 29(2010) 405-434.

    4. [4]

      [4] D.J. Zhou, L.B. Dai, H. Ni, G.L. Hui, S.G. Yuan, Preparation and characterization of polyphenylene sulfide-based chelating fibers, Chin. Chem. Lett. 25(2014) 221-225.

    5. [5]

      [5] S.W. Benson, Thermochemistry and kinetics of sulfur-containing molecules and radicals, Chem. Rev. 78(1978) 23-35.

    6. [6]

      [6] X.F. Yang, Z. Su, C.H. Liu, H.P. Qi, M.L. Zhao, A thiol-selective fluorogenic probe based on the cleavage of 4-methylumbelliferyl-20,40, 60-trinitropheyl ether, Anal. Bioanal. Chem. 396(2010) 2667-2674.

    7. [7]

      [7] M. Zhang, M.X. Yu, F.Y. Li, et al., A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging, J. Am. Chem. Soc. 129(2007) 10322-10333.

    8. [8]

      [8] Y.C. Chen, C.C. Zhu, Z.H. Yang, et al., A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria, Angew. Chem. Int. Ed. 52(2013) 1688-1691.

    9. [9]

      [9] Y.Q. Sun, M.L. Chen, J. Liu, et al., Nitroolefin-based coumarin as a colorimetric and fluorescent dual probe for biothiols, Chem. Commun. 47(2011) 11029-11031.

    10. [10]

      [10] L. Li, H.Y. Li, L. Sun, et al., A highly sensitive fluorescence probe for fast thiolquantification assay of glutathione reductase, Angew. Chem. Int. Ed. 48(2009) 4034-4037.

    11. [11]

      [11] S.T. Huang, K.N. Ting, K.L. Wang, Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols, Anal. Chim. Acta 620(2008) 120-126.

    12. [12]

      [12] H. Chen, Z.L. Zou, S.L. Tan, et al., Efficient synthesis of water-soluble calix[4] arenes via thiol-ene"click" chemistry, Chin. Chem. Lett. 24(2013) 367-369.

    13. [13]

      [13] W.M. Xuan, C.Q. Sheng, Y.T. Cao, W.H. He, W. Wang, Fluorescent probes for the detection of hydrogen sulfide in biological systems, Angew. Chem. Int. Ed. 51(2012) 2282-2284.

    14. [14]

      [14] A.R. Lippert, E.J. New, C.J. Chang, Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells, J. Am. Chem. Soc. 133(2011) 10078-10080.

    15. [15]

      [15] J.H. Lee, C.S. Lim, Y.S. Tian, J.H. Han, B.R. Cho, A two-photon fluorescent probe for thiols in live cells and tissues, J. Am. Chem. Soc. 132(2010) 1216-1217.

    16. [16]

      [16] M.M. Pires, J. Chmielewski, Fluorescence imaging of cellular glutathione using a latent rhodamine, Org. Lett. 10(2008) 837-840.

    17. [17]

      [17] X. Li, S.J. Qian, Q.J. He, et al., Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells, Org. Biomol. Chem. 8(2010) 3627-3630.

    18. [18]

      [18] S.M. Ji, H.M. Guo, X.L. Yuan, et al., A highly selective off-on red-emitting phosphorescent thiol probe with large stokes shift and long luminescent lifetime, Org. Lett. 12(2010) 2876-2879.

    19. [19]

      [19] S.P. Wang, W.J. Deng, D. Sun, et al., A colorimetric and fluorescent merocyaninebased probe for biological thiols, Org. Biomol. Chem. 7(2009) 4017-4020.

    20. [20]

      [20] W. Jiang, Q.Q. Fu, H.Y. Fan, J. Ho, W. Wang, A highly selective fluorescent probe for thiophenols, Angew. Chem. 119(2007) 8597-8600.

    21. [21]

      [21] J. Bouffard, Y. Kim, T.M. Swage, R. Weissleder, S.A. Hilderbrand, A highly selective fluorescent probe for thiol bioimaging, Org. Lett. 10(2008) 37-40.

    22. [22]

      [22] J.Y. Shao, H.M. Guo, S.M. Ji, J.Z. Zhao, Styryl-BODIPY based red-emitting fluorescent OFF-ON molecular probe for specific detection of cysteine, Biosens. Bioelectron. 26(2011) 3012-3017.

    23. [23]

      [23] B.A. Krizek, B.T. Amann, V.J. Kilfoil, D.L. Merkle, J.M. Berg, A consensus zinc finger peptide:design, high-affinity metal binding, a pH-dependent structure, and a His to Cys sequence variant, J. Am. Chem. Soc. 113(1991) 4518-4523.

    24. [24]

      [24] H.P. Wu, C.C. Huang, T.L. Cheng, W.L. Tseng, Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine, Talanta 76(2008) 347-352.

    25. [25]

      [25] N. Shao, J.Y. Jin, S.M. Cheung, et al., A spiropyran-based ensemble for visual recognition and quantification of cysteine and homocysteine at physiological levels, Angew. Chem. 118(2006) 5066-5070.

    26. [26]

      [26] X.L. Pei, H.Y. Tian, W.B. Zhang, A.M. Brouwer, J.H. Qian, Colorimetric and fluorescent determination of sulfide and sulfite with kinetic discrimination, Analyst 139(2014) 5290-5296.

    27. [27]

      [27] H.Y. Tian, J.H. Qian, Q. Sun, et al., A coumarin-based fluorescent probe for differential identification of sulfide and sulfite in CTAB micelle solution, Analyst 139(2014) 3373-3377.

    28. [28]

      [28] H.Y. Tian, J.H. Qian, Q. Sun, H.Y. Bai, W.B. Zhang, Colorimetric and ratiometric fluorescent detection of sulfite in water via cationic surfactant-promoted addition of sulfite to a,b-unsaturated ketone, Anal. Chim. Acta 788(2013) 165-170.

    29. [29]

      [29] G.J. Kim, K. Lee, H. Kwon, H.T. Kim, Ratiometric fluorescence imaging of cellular glutathione, Org. Lett. 13(2011) 2799-2801.

  • 加载中
    1. [1]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    2. [2]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    3. [3]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    4. [4]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    5. [5]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    6. [6]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    7. [7]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

    8. [8]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    9. [9]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    10. [10]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    11. [11]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    12. [12]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    13. [13]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    14. [14]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    15. [15]

      Sixin AiWenxiu LiHuayong ZhuYang WanWeiying Lin . Viscosity-responsive signal amplification dual-modal probe triggered by cysteine/homocysteine for monitoring diabetic liver damages and repair processes. Chinese Chemical Letters, 2025, 36(3): 109904-. doi: 10.1016/j.cclet.2024.109904

    16. [16]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    17. [17]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    18. [18]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    19. [19]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    20. [20]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

Metrics
  • PDF Downloads(0)
  • Abstract views(774)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return