Citation:
Elham Tabrizian, Ali Amoozadeh, Salman Rahmani, Elham Imanifar, Saeede Azhari, Masoumeh Malmir. One-pot, solvent-free and efficient synthesis of 2,4,6-triarylpyridines catalyzed by nano-titania-supported sulfonic acid as a novel heterogeneous nanocatalyst[J]. Chinese Chemical Letters,
;2015, 26(10): 1278-1282.
doi:
10.1016/j.cclet.2015.06.013
-
Nano titania-supported sulfonic acid (n-TSA) has found to be a highly efficient, eco-friendly and recyclable heterogeneous nanocatalyst for the solvent-free synthesis of 2, 4, 6-triarylpyridines through one-pot three-component reaction of acetophenones, aryl aldehydes and ammonium acetate. This reported method illustrates several advantages such as environmental friendliness reaction conditions, simplicity, short reaction time, easy work up, reusability of catalyst and high yields of the products. One new compound is reported too. Furthermore, the catalyst could be recycled after a simple work-up, and reused at least six times without substantial reduction in its catalytic activity.
-
-
-
[1]
[1] R.W. Armstrong, A.P. Combs, P.A. Tempest, S.D. Brown, T.A. Keating, Multiplecomponent condensation strategies for combinatorial library synthesis, Acc. Chem. Res. 29(1996) 123-131.
-
[2]
[2] Y.A. Ibrahim, H. Behbehani, M.R. Ibrahim, Efficient atom economic approaches towards macrocyclic crownamides via ring closure metathesis, Tetrahedron Lett. 43(2002) 4207-4210.
-
[3]
[3] M. Sathishkumar, S. Nagarajan, P. Shanmugavelan, et al., One-pot regio/stereoselective synthesis of 2-iminothiazolidin-4-ones under solvent/scavenger-free conditions, Beilstein J. Org. Chem. 9(2013) 689-697.
-
[4]
[4] R.S. Varma, Solvent-free organic syntheses using supported reagents and microwave irradiation, Green Chem. 1(1999) 43-55.
-
[5]
[5] H. Naeimi, Z.S. Nazifi, Sulfonated diatomite as heterogeneous acidic nanoporous catalyst for synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes under green conditions, Appl. Catal. A 477(2014) 132-140.
-
[6]
[6] P. Sivaguru, A. Lalitha, Ceric ammonium nitrate supported HY-zeolite:an efficient catalyst for the synthesis of 18-dioxo-octahydroxanthenes, Chin. Chem. Lett. 25(2014) 321-323.
-
[7]
[7] P. Li, S. Regati, H.C. Huang, et al., A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions, Chin. Chem. Lett. 26(2015) 6-10.
-
[8]
[8] S.R. Jetti,A. Bhatewara, T. Kadre, S. Jain, Silica-bonded N-propyl sulfamic acid as an efficient recyclable catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under heterogeneous conditions, Chin. Chem. Lett. 25(2014) 469-473.
-
[9]
[9] S. Rahmani, A. Amoozadeh, E. Kolvari, Nano titania-supported sulfonic acid:an efficient and reusable catalyst for a range of organic reactions under solvent free conditions, Catal. Commun. 56(2014) 184-188.
-
[10]
[10] I.J. Enyedy, S. Sakamuri, W.A. Zaman, K.M. Johnson, S. Wang, Pharmacophorebased discovery of substituted pyridines as novel dopamine transporter inhibitors, Bioorg. Med. Chem. Lett. 13(2003) 513-517.
-
[11]
[11] B.Y. Kim, J.B. Ahn, H.W. Lee, et al., Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione, Eur. J. Med. Chem. 39(2004) 433-447.
-
[12]
[12] E.C. Constable, Metallodendrimers:metal ions as supramolecular glue, Chem. Commun. (1997) 1073-1080.
-
[13]
[13] E.C. Constable, E.L. Dunphy, C.E. Housecroft, et al., Structural development of free or coordinated 40-(4-pyridyl)-2, 20:60,200-terpyridine ligands through N-alkylation:new strategies for metallamacrocycle formation, Chem. Eur. J. 12(2006) 4600-4610.
-
[14]
[14] B.G.G. Lohmeijer, U.S. Schubert, Playing LEGO with macromolecules:design, synthesis, and self-organization with metal complexes, J. Polym. Sci. A:Polym. Chem. 41(2003) 1413-1427.
-
[15]
[15] F. Krohnke, The specific synthesis of pyridines and oligopyridines, Synthesis 1(1976) 1-24.
-
[16]
[16] G.W.V. Cave, C.L. Raston, Efficient synthesis of pyridines via a sequential solventless aldol condensation and Michael addition, J. Chem. Soc., Perkin Trans. 1(2001) 3258-3264.
-
[17]
[17] K.T. Potts, M.J. Cipullo, P. Ralli, G. Theodoridis, Synthesis of 2,6-disubstituted pyridines, polypyridinyls, and annulated pyridines, J. Org. Chem. 47(1982) 3027-3038.
-
[18]
[18] M. Wang, Z. Yang, Z. Song, Q. Wang, Three-component one-pot synthesis of 2,4,6-triarylpyridines without catalyst and solvent, J. Heterocycl. Chem. 52(2014) 907-910.
-
[19]
[19] A.R. Moosavi-Zare, M.A. Zolfigol, S. Farahmand, et al., Synthesis of 2,4,6-triarylpyridines using ZroCl2 under solvent-free conditions, Synlett 25(2014) 193-196.
-
[20]
[20] Z. Zarnegar, J. Safari, M. Borjian-borujeni, Ultrasound-mediated synthesis of 2,4,6-triaryl-pyridines using MgAl2O4 nanostructures, Chem. Heterocycl. Compd. (2015) 1-9.
-
[21]
[21] M. Reza, M. Shafiee, R. Moloudi, M. Ghashang, ZnO nanopowder:an efficient catalyst for the preparation of 2,4,6-triaryl pyridines under solvent-free condition, APCBEE Proc. 1(2012) 221-225.
-
[22]
[22] J. Safari, S. Gandomi-Ravandi, M. Borujeni, Green and solvent-free procedure for microwave-assisted synthesis of 2,4,6-triarylpyridines catalysed using MgAl2O4 nanocrystals, J. Chem. Sci. 125(2013) 1063-1070.
-
[23]
[23] A. Amoozadeh, E. Tabrizian, S. Rahmani, Nano titania-supported sulfonic acid catalyzed synthesis of α,α'-bis(substituted-benzylidene)cycloalkanones and their xanthene derivatives under solvent-free conditions, C. R. Chim. 18(2015) 848-857.
-
[24]
[24] A. Davoodnia, M. Bakavoli, R. Moloudi, N. Tavakoli-Hoseini, M. Khashi, Highly efficient, one-pot, solvent-free synthesis of 2,4,6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst, Monatsh. Chem. Chem. Mon. 141(2010) 867-870.
-
[25]
[25] K.S. Vellayan Kannan, Montmorillonite K10 clay catalyzed one pot synthesis of 2,4,6-trisubstituted pyridine under solvent free condition, Mod. Res. Catal. 2(2013) 42-46.
-
[26]
[26] J. Safari, Z. Zarnegar, M. Borujeni, Mesoporous nanocrystalline MgAl2O4:a new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solventfree conditions, Chem. Pap. 67(2013) 688-695.
-
[27]
[27] P. Rajput, N.J.P. Subhashini, S. Raj, Synthesis of 2,4,6-triarylpyridines using AlPO4 under solvent-free conditions, J. Sci. Res. 2(2010) 337-342.
-
[28]
[28] K.S. Reddy, R.B. Reddy, K. Mukkanti, G. Thota, G. Srinivasulu, Synthesis of 2,4,6-triarylpyridines using TBAHS as a catalyst, Rasayan J. Chem. 4(2011) 299-302.
-
[1]
-
-
-
[1]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[2]
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
-
[3]
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
-
[4]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
-
[5]
Xiaoyu Zhang , Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439
-
[6]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[7]
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
-
[8]
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
-
[9]
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
-
[10]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[11]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[12]
Jia-Cheng Hou , Hong-Tao Ji , Yu-Han Lu , Jia-Sheng Wang , Yao-Dan Xu , Yan-Yan Zeng , Wei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514
-
[13]
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
-
[14]
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
-
[15]
Shuo Zhang , Haitao Liao , Zhi-Qun Liu , Chong Yan , Jia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284
-
[16]
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
-
[17]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[18]
Shiyu Pan , Bo Cao , Deling Yuan , Tifeng Jiao , Qingrui Zhang , Shoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185
-
[19]
Chunhua Ma , Mengjiao Liu , Siyu Ouyang , Zhenwei Cui , Jingjing Bi , Yuqin Jiang , Zhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755
-
[20]
Jindong Hao , Yufen Lv , Shuyue Tian , Chao Ma , Wenxiu Cui , Huilan Yue , Wei Wei , Dong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(728)
- HTML views(0)