Citation: Yang Xu, Liang-Sheng Qiang, Yu-Lin Yang, Li-Guo Wei, Ping Wang, Rui-Qing Fan. Enhanced performance of ruthenium dye-sensitized solar cell by employing an organic co-adsorbent of N,N'-bis((pyridin-2-yl)(methyl) methylene)-o-phenylenediamine[J]. Chinese Chemical Letters, ;2016, 27(01): 127-134. doi: 10.1016/j.cclet.2015.06.010 shu

Enhanced performance of ruthenium dye-sensitized solar cell by employing an organic co-adsorbent of N,N'-bis((pyridin-2-yl)(methyl) methylene)-o-phenylenediamine

  • Corresponding author: Yu-Lin Yang,  Rui-Qing Fan, 
  • Received Date: 14 April 2015
    Available Online: 31 May 2015

    Fund Project: and the Fundamental Research Funds for the Central Universities(No. HIT. IBRSEM. A201409) (973 Program, No. 2013CB632900)

  • A pyridine-anchor co-adsorbent of N,N'-bis((pyridin-2-yl)(methyl) methylene)-o-phenylenediamine(named BPPI) is prepared and employed as co-adsorbent in dye-sensitized solar cells(DSSCs). The prepared co-adsorbent could overcome the deficiency of N719 absorption in the low wavelength region of visible spectrum, offset competitive visible light absorption of I3-, enhance the spectral responses of the co-adsorbed TiO2 film in region from 300 nm to 750 nm, suppress charge recombination, prolong electron lifetime, and decrease the total resistance of DSSCs. The optimized cell device co-sensitized by BPPI/N719 dye gives a short circuit current density of 12.98 mA cm-2, an open circuit voltage of 0.73 V, and a fill factor of 0.66 corresponding to an overall conversion efficiency of 6.22% under standard global AM 1.5 solar irradiation, which is much higher than that of device solely sensitized by N719(5.29%) under the same conditions. Mechanistic investigations are carried out by various spectral and electrochemical characterizations.
  • 加载中
    1. [1]

      [1] A. Hagfeldt, G. Boschloo, L.C. Sun, L. Koo, H. Pettersso, Dye-sensitized solar cells, Chem. Rev. 110(2010) 6595-6663.

    2. [2]

      [2] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films, Nature 353(1991) 737-740.

    3. [3]

      [3] P.J. Cameron, L.M. Peter, Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells, J. Phys. Chem. B 107(2003) 14394-14400.

    4. [4]

      [4] M.K. Nazeeruddin, F. de Angelis, S. Fantacci, et al., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 127(2005) 16835-16847.

    5. [5]

      [5] K.M. Guo, M.Y. Li, X.L. Fang, et al., Performance enhancement in dye-sensitized solar cells by utilization of a bifunctional layer consisting of core-shell b-NaYF4:Er3+/Yb3+@SiO2 submicron hexagonal prisms, J. Power Sources 249(2014) 72-78.

    6. [6]

      [6] Y.R. Gao, L.L. Chu, W. Guo, T.L. Ma, Snythesis and photoelectric properties of an organic dye containing benzo[1, 2-b:4,5-b'] dithiophene for dye-sensitized solar cells, Chin. Chem. Lett. 24(2013) 149-152.

    7. [7]

      [7] Q.P. Liu, Analysis on dye-sensitized solar cells based on Fe-doped TiO2 by intensity-modulated photocurrent spectroscopy and Mott-Schottky, Chin. Chem. Lett. 25(2014) 953-956.

    8. [8]

      [8] Y.Q. Wang, X.L. Gao, B. Song, Y.L. Gu, Y.M. Sun, Photoelectrochemical properties of MWCNT-TiO2 hybrid materials as a counter electrode for dye-sensitized solar cells, Chin. Chem. Lett. 25(2014) 491-495.

    9. [9]

      [9] A. Yella, H.W. Lee, H.N. Tsao, et al., Porphyrin-sensitized solar cells with cobalt(Ⅱ/ⅡI)-based redox electrolyte exceed 12 percent efficiency, Science 334(2011) 629-634.

    10. [10]

      [10] S.P. Singh, M. Chandrasekharam, K.S.V. Gupta, et al., Co-sensitization of amphiphilic ruthenium(Ⅱ) sensitizer with a metal free organic dye:improved photovoltaic performance of dye sensitized solar cells, Org. Electron. 14(2013) 1237-1241.

    11. [11]

      [11] G.D. Sharma, M.S. Roy, S.P. Singh, Improvement in the power conversion efficiency of thiocyanate-free Ru(Ⅱ) based dye sensitized solar cells by cosensitization with a metal-free dye, J. Mater. Chem. 22(2012) 18788-18792.

    12. [12]

      [12] L.Y. Han, A. Islam, H. Chen, et al., High-efficiency dye-sensitized solar cell with a novel co-adsorbent, Energy Environ. Sci. 5(2012) 6057-6060.

    13. [13]

      [13] H. Ozawa, R. Shimizu, H. Arakawa, Significant improvement in the conversion efficiency of black-dye-based dye-sensitized solar cells by cosensitization with organic dye, RSC Adv. 2(2012) 3198-3200.

    14. [14]

      [14] M. Mojiri-Foroushani, H. Dehghani, N. Salehi-Vanani, Enhancement of dye-sensitized solar cells performances by improving electron density in conduction band of nanostructure TiO2 electrode with using a metalloporphyrin as additional dye, Electrochim. Acta 92(2013) 315-322.

    15. [15]

      [15] P.J. Holliman, M. Mohsen, A. Connell, et al., Ultra-fast co-sensitization and trisensitization of dye-sensitized solar cells with N719, SQ1 and triarylamine dyes, J. Mater. Chem. 22(2012) 13318-13327.

    16. [16]

      [16] K.M. Lee, Y.C. Hsu, M. Ikegami, et al., Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells, J. Power Sources 196(2011) 2416-2421.

    17. [17]

      [17] S.Q. Fan, C. Kim, B. Fang, et al., Dye heterogeneously positioning on a single TiO2 electrode, J. Phys. Chem. C 115(2011) 7747-7754.

    18. [18]

      [18] G.D. Sharma, D. Daphnomili, K.S.V. Gupta, et al., Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of zinc-porphyrin and thiocyanate-free ruthenium(Ⅱ) terpyridine dyes and graphene modified TiO2 photoanode, RSC Adv. 3(2013) 22412-22420.

    19. [19]

      [19] Z.S. Wu, Y.N. Wei, Z.W. An, X.B. Chen, P. Chen, Co-sensitization of N719 with an organic dye for dye-sensitized solar cells application, Bull. Korean Chem. Soc. 35(2014) 1449-1454.

    20. [20]

      [20] S. Chang, H.D. Wang, L.T.L. Lee, et al., Panchromatic light harvesting by N719 with a porphyrin molecule for high-performance dye-sensitized soalr cells, J. Mater. Chem. C 2(2014) 3521-3526.

    21. [21]

      [21] Y. Harima, T. Fujita, Y. Kano, et al., Lewis-acid sites of TiO2 surface for adsorption of organic dye having pyridyl group as anchoring unit, J. Phys. Chem. C 117(2013) 16364-16370.

    22. [22]

      [22] Y. Ooyama, S. Inoue, T. Nagano, et al., Dye-sensitized solar cells based on donoracceptor p-conjugated fluorescent dyes with a pyridine ring as an electronwithdrawing anchoring group, Angew. Chem. Int. Ed. 50(2011) 7429-7433.

    23. [23]

      [23] D.B. Kunag, S. Ito, B. Wenger, et al., High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells, J. Am. Chem. Soc. 128(2006) 4146-4154.

    24. [24]

      [24] G.D. Sharma, S.P. Singh, R. Kurchania, R.J. Ball, Cosensitization of dye sensitized solar cells with a thiocyanate free Ru dye and a metal free dye containing thienylfluorene conjugation, RSC Adv. 3(2013) 6036-6043.

    25. [25]

      [25] C.Y. Lin, C.F. Lo, L.Y. Luo, et al., Design and characterization of novel porphyrins with oligo(phenylethylnyl) links of varied length for dye-sensitized solar cells:synthesis and optical, electrochemical, and photovoltaic investigation, J. Phys. Chem. C 113(2009) 755-764.

    26. [26]

      [26] C.M. Cardona, W. Li, A.E. Kaifer, D. Stockdale, G.C. Bazan, Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications, Adv. Mater. 23(2011) 2367-2371.

    27. [27]

      [27] G. Boschloo, L. Häggman, A. Hagfeldt, Quantification of the effect of 4-tertbutylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells, J. Phys. Chem. B 110(2006) 13144-13150.

    28. [28]

      [28] K.R.J. Thomas, Y.C. Hsu, J.T. Lin, et al., 2,3-disubstituted thiophene-based organic dyes for solar cells, Chem. Mater. 20(2008) 1830-1840.

    29. [29]

      [29] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B 107(2003) 5483-5486.

    30. [30]

      [30] L.Q. Jing, X.J. Sun, J. Shang, et al., Review of surface photovoltage spectra of nanosized semiconductor and its applications in heterogeneous photocatalysis, Sol. Energy Mater. Sol. Cells 79(2003) 133-151.

    31. [31]

      [31] G.D. Sharma, G.E. Zervaki, P.A. Angaridis, et al., Stepwise co-sensitization as a useful tool for enhancement of power conversion efficiency of dye-sensitized solar cells:the case of an unsymmetrical porphyrin dyad and a metal-free organic dye, Org. Electron. 15(2014) 1324-1337.

    32. [32]

      [32] X. Jiang, T. Marinado, E. Gabrielsson, et al., Structural modification of organic dyes for efficient coadsorbent-free dye-sensitized solar cells, J. Phys. Chem. C 114(2010) 2799-2805.

    33. [33]

      [33] P. Salvatori, G. Marotta, A. Cinti, et al., Supramolecular interactions of chenodeoxycholic acid increase the efficiency of dye-sensitized solar cells based on a cobalt electrolyte, J. Phys. Chem. C 117(2013) 3874-3887.

    34. [34]

      [34] G.D. Sharma, S.P. Singh, P. Nagarjuna, et al., Efficient dye-sensitized solar cells based on cosensitized metal free organic dyes with complementary absorption spectra, J. Renew. Sustain. Energy 5(2013) 043107.

    35. [35]

      [35] K. Mukherjee, T.H. Teng, R. Jose, S. Ramakrishna, Electron transport in electrospun TiO2 nanofiber dye-sensitized solar cells, Appl. Phys. Lett. 95(2009) 012101.

    36. [36]

      [36] J. Bisquert, Theory of the impedance of electron diffusion and recombination in a thin layer, J. Phys. Chem. B 106(2002) 325-333.

    37. [37]

      [37] J. Bisquert, Chemical capacitance of nanostructured semiconductors:its origin and significance for nanocomposite solar cells, Phys. Chem. Chem. Phys. 5(2003) 5360-5364.

    38. [38]

      [38] A. Zaban, A. Meier, B.A. Gregg, Electric potential distribution and short-range screening in nanoporous TiO2 electrodes, J. Phys. Chem. B 101(1997) 7985-7990.

    39. [39]

      [39] S. Ito, P. Liska, P. Comte, et al., Control of dark current in photoelectrochemical(TiO2/I-/I3-) and dye-sensitized solar cells, Chem. Commun. 34(2005) 4351-4353.

    40. [40]

      [40] J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Seró, Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method, J. Am. Chem. Soc. 126(2004) 13550-13559.

    41. [41]

      [41] K. Fan, W. Zhang, T.Y. Peng, J.N. Chen, F. Yang, Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency, J. Phys. Chem. C 115(2011) 17213-17219.

    42. [42]

      [42] H. Yua, S.Q. Zhang, H.J. Zhao, G. Will, P. Liu, An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells, Electrochim. Acta 54(2009) 1319-1324.

    43. [43]

      [43] A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements, ChemPhysChem 4(2003) 859-864.

  • 加载中
    1. [1]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    2. [2]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    3. [3]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    4. [4]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    5. [5]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    6. [6]

      Xiaoshuai WuBailei WangYichen LiXiaoxuan GuanMingjing YinWenquan LvYin ChenFei LuTao QinHuyang GaoWeiqian JinYifu HuangCuiping LiMing GaoJunyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211

    7. [7]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    8. [8]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    11. [11]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    12. [12]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    13. [13]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    14. [14]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    15. [15]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    16. [16]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    17. [17]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    18. [18]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    19. [19]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    20. [20]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

Metrics
  • PDF Downloads(0)
  • Abstract views(676)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return