Citation: Yan Zhang, Lian-Meng Wang, En-Zhong Tan, Shi-He Yang, Li-Dong Li, Lin Guo. Uniform arrays of gold nanoparticles with different surface roughness for surface enhanced Raman scattering[J]. Chinese Chemical Letters, ;2015, 26(11): 1426-1430. doi: 10.1016/j.cclet.2015.06.004 shu

Uniform arrays of gold nanoparticles with different surface roughness for surface enhanced Raman scattering

  • Corresponding author: Li-Dong Li,  Lin Guo, 
  • Received Date: 27 April 2015
    Available Online: 27 May 2015

  • Uniform arrays of coarse and smooth gold nanoparticles with diameter about 130 nm were successfully synthesized through seed-mediated growth method, separately. Scanning and transmission electron microscopy (SEM and TEM) and X-ray diffraction (XRD) have been used to study the formation and structure of the nanocomposites. The high enhancement factor for surface-enhanced Raman scattering of coarse and smooth gold nanoparticles were estimated to be about 3.1 × 106 and 2.0 × 106, respectively. It is evident that the coarse gold nanostructures has higher influence factor than the smooth gold nanostructures. Therefore, these unique properties of the coarse Au nanoparticles appear to be very promising for applications as high-performance SERS substrates.
  • 加载中
    1. [1]

      [1] P.S. Kumar, I. Pastoriza-Santos, B. Rodríguez-Gonzá lez, et al., High-yield synthesis and optical response of gold nanostars, Nanotechnology 19 (2008) 015606.

    2. [2]

      [2] E.C. Hao, R.C. Bailey, G.C. Schatz, J.T. Hupp, S.Y. Li, Synthesis and optical properties of "branched" gold nanocrystals, Nano Lett. 4 (2004) 327-330.

    3. [3]

      [3] F. Hao, C.L. Nehl, J.H. Hafner, P. Nordlander, Plasmon resonances of a gold nanostar, Nano Lett. 7 (2007) 729-732.

    4. [4]

      [4] C.L. Nehl, H.W. Liao, J.H. Hafner, Optical properties of star-shaped gold nanoparticles, Nano Lett. 6 (2006) 683-688.

    5. [5]

      [5] K.B. Li, L. Clime, L.L. Tay, et al., Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells, Anal. Chem. 80 (2008) 4945-4950.

    6. [6]

      [6] H. Wei, F. Hao, Y.Z. Huang, et al., Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems, Nano Lett. 8 (2008) 2497-2502.

    7. [7]

      [7] H.R. Tang, Q.Q. Li, Y.L. Ren, et al., Surface enhanced Raman spectroscopy signals of mixed pesticides and their identification, Chin. Chem. Lett. 22 (2011) 1477- 1480.

    8. [8]

      [8] J. Grand, M. Lamy de la Chapelle, J.L. Bijeon, et al., Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays, Phys. Rev. B 72 (2005) 033407.

    9. [9]

      [9] J.X. Fang, S.Y. Du, S. Lebedkin, et al., Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy, Nano Lett. 10 (2010) 5006-5013.

    10. [10]

      [10] C.G. Khoury, T. Vo-Dinh, Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization, J. Phys. Chem. C 112 (2008) 18849- 18859.

    11. [11]

      [11] P.G. Yin, T.T. You, E.Z. Tan, et al., Characterization of tetrahexahedral gold nanocrystals: a combined study by surface-enhanced raman spectroscopy and computational simulations, J. Phys. Chem. C 115 (2011) 18061-18069.

    12. [12]

      [12] Z.X. Luo, Y.S. Zhao, W.S. Yang, et al., Core-shell nanopillars of fullerene C60/C70 loading with colloidal Au nanoparticles: a Raman scattering investigation, J. Phys. Chem. A 113 (2009) 9612-9616.

    13. [13]

      [13] Z.X. Luo, W.S. Yang, A.D. Peng, et al., Net-like assembly of Au nanoparticles as a highly active substrate for surface-enhanced Raman and infrared spectroscopy, J. Phys. Chem. A 113 (2009) 2467-2472.

    14. [14]

      [14] I. Pardiñas-Blanco, C.E. Hoppe, Y. Piñ eiro-Redondo, M. Arturo Ló pez-Quintela, J. Rivas, Formation of gold branched plates in diluted solutions of poly(vinylpyrrolidone) and their use for the fabrication of near-infrared-absorbing films and coatings, Langmuir 24 (2008) 983-990.

    15. [15]

      [15] I. Washio, Y.J. Xiong, Y.D. Yin, Y.N. Xia, Reduction by the end groups of poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates, Adv. Mater. 18 (2006) 1745-1749.

    16. [16]

      [16] T.H. Ha, H.J. Koo, B.H. Chung, Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions, J. Phys. Chem. C 111 (2007) 1123-1130.

    17. [17]

      [17] O.M. Magnussen, Ordered anion adlayers on metal electrode surfaces, Chem. Rev. 102 (2002) 679-726.

    18. [18]

      [18] W.Y. Li, Y.N. Xia, Facile synthesis of gold octahedra by direct reduction of HAuCl4 in an aqueous solution, Chem. Asian J. 5 (2010) 1312-1316.

    19. [19]

      [19] Y.L. Wang, X.Q. Zou, W. Ren, W.D. Wang, E.K. Wang, Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface, J. Phys. Chem. C 111 (2007) 3259-3265.

    20. [20]

      [20] L.X. Xia, H.B. Wang, J. Wang, et al., Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy, J. Chem. Phys. 129 (2008) 134703.

  • 加载中
    1. [1]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    2. [2]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    3. [3]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    4. [4]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    5. [5]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    6. [6]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    9. [9]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    10. [10]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    11. [11]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    12. [12]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    13. [13]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    14. [14]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    15. [15]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    16. [16]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    17. [17]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    18. [18]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    19. [19]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    20. [20]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

Metrics
  • PDF Downloads(0)
  • Abstract views(714)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return