Citation: Kun-Lun Xu, Bao-Hua Guo, Renate Reiter, Günter Reiter, Jun Xu. Simulation of secondary nucleation of polymer crystallization via a model of microscopic kinetics[J]. Chinese Chemical Letters, ;2015, 26(9): 1105-1108. doi: 10.1016/j.cclet.2015.06.002 shu

Simulation of secondary nucleation of polymer crystallization via a model of microscopic kinetics

  • Corresponding author: Jun Xu, 
  • Received Date: 22 April 2015
    Available Online: 19 May 2015

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (No. 21374054) (No. 21374054)

  • We present simulations of the mechanism of secondary nucleation of polymer crystallization, based on a new model accounting for the microscopic kinetics of attaching and detaching. As the key feature of the model, we introduced multibody-interaction parameters that establish correlations between the attaching and detaching rate constants and the resulting thickness and width of the crystalline lamella. Using MATLAB and Monte Carlomethod, we followed the evolution of the secondary nuclei as a function of various multibody-interaction parameters. We identified three different growth progressions of the crystal:(i) Widening, (ii) thickening and (iii) simultaneously thickening and widening of lamellar crystals, controlled by the corresponding kinetic parameters.
  • 加载中
    1. [1]

      [1] J.I. Lauritzen, J.D. Hoffman, Theory of formation of polymer crystals with folded chains in dilute solution, J. Res. Natl. Bur. Stand. A:Phys. Ch. 64(1960) 73-102.

    2. [2]

      [2] J.D. Hoffman, J.I. Lauritzen, Crystallization of bulk polymers with chain folding-theory of growth of lamellar spherulites, J. Res. Natl. Bur. Stand. 65(1961) 297-336.

    3. [3]

      [3] J.I. Lauritzen, J.D. Hoffman, Extension of theory of growth of chain-folded polymer crystals to large undercoolings, J. Appl. Phys. 44(1973) 4340-4352.

    4. [4]

      [4] D.M. Sadler, G.H. Gilmer, Rate-theory model of polymer crystallization, Phys. Rev. Lett. 56(1986) 2708-2711.

    5. [5]

      [5] G.H. Gilmer, P. Bennema, Simulation of crystal growth with surface diffusion, J. Appl. Phys. 43(1972) 1347-1360.

    6. [6]

      [6] D.M. Sadler, G.H. Gilmer, Selection of lamellar thickness in polymer crystal growth:a rate-theory model, Phys. Rev. B 38(1988) 5684-5693.

    7. [7]

      [7] M.A. Spinner, R.W. Watkins, G. Goldbeck-Wood, Simulation of growth and surface roughening of polymer single crystals, J. Chem. Soc., Faraday Trans. 91(1995) 2587-2592.

    8. [8]

      [8] G. Reiter, J.U. Sommer, Crystallization of adsorbed polymer monolayers, Phys. Rev. Lett. 80(1998) 3771-3774.

    9. [9]

      [9] J.U. Sommer, G. Reiter, Polymer crystallization in quasi-two dimensions. II. Kinetic models and computer simulations, J. Chem. Phys. 112(2000) 4384-4393.

    10. [10]

      [10] J.U. Sommer, G. Reiter, Morphogenesis and nonequilibrium pattern formation in two-dimensional polymer crystallization, Phase Transit. 77(2004) 703-745.

    11. [11]

      [11] C.F. Luo, J.U. Sommer, Growth pathway and precursor states in single lamellar crystallization:MD simulations, Macromolecules 44(2011) 1523-1529.

    12. [12]

      [12] T.Y. Cho, W. Stille, G. Strobl, Zero growth temperature and growth kinetics of crystallizing poly(ε-caprolactone), Colloid Polym. Sci. 285(2007) 931-934.

    13. [13]

      [13] G. Strobl, T.Y. Cho, Growth kinetics of polymer crystals in bulk, Eur. Phys. J. E 23(2007) 55-65.

    14. [14]

      [14] W.B. Hu, Intramolecular crystal nucleation, in:G. Reiter, G.R. Strobl (Eds.), Progress in Understanding of Polymer Crystallization, Springer, Berlin, 2007, pp. 47-63.

    15. [15]

      [15] W.B. Hu, Chain folding in polymer melt crystallization studied by dynamic Monte Carlo simulations, J. Chem. Phys. 115(2001) 4395-4401.

    16. [16]

      [16] Q.Y. Tang, W.B. Hu, Molecular simulation of structural relaxation in ultrathin polymer films, Phys. Chem. Chem. Phys. 15(2013) 20679-20690.

    17. [17]

      [17] M.Q. Wang, H.H. Gao, L.Y. Zha, et al., Systematic kinetic analysis on monolayer lamellar crystal thickening via chain-sliding diffusion of polymers, Macromolecules 46(2013) 164-171.

    18. [18]

      [18] M. Muthukumar, Modeling polymer crystallization, in:G. Allegra (Ed.), Interphases and Mesophases in Polymer Crystallization III, Springer-Verlag, Berlin, 2005, pp. 241-274.

    19. [19]

      [19] M. Muthukumar, P. Welch, Modeling polymer crystallization from solutions, Polymer 41(2000) 8833-8837.

    20. [20]

      [20] R. Becker, W. Doring, Kinetic treatment of germ formation in supersaturated vapour, Ann. Phys. 24(1935) 719-752.

    21. [21]

      [21] D. Turnbull, J.C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17(1949) 71-73.

    22. [22]

      [22] D.M. Sadler, G.H. Gilmer, A model for chain folding in polymer crystals:rough growth faces are consistent with the observed growth rates, Polymer 25(1984) 1446-1452.

    23. [23]

      [23] B. Zhang, J.B. Chen, H. Zhang, et al., Annealing-induced periodic patterns in solution grown polymer single crystals, RSC Adv. 5(2015) 12974-12980.

    24. [24]

      [24] M. Hikosaka, Unified theory of nucleation of folded-chain crystals and extendedchain crystals of linear-chain polymers, Polymer 28(1987) 1257-1264.

    25. [25]

      [25] M. Hikosaka, K. Watanabe, K. Okada, S. Yamazaki, Topological mechanism of polymer nucleation and growth-the role of chain sliding diffusion and entanglement, Adv. Polym. Sci. 191(2005) 137-186.

  • 加载中
    1. [1]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    2. [2]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    3. [3]

      Haozhi LeiQian XiaXiqiu WangYang SunWeihong Tan . Simulation of immune signal transduction through DNA strand displacement. Chinese Chemical Letters, 2025, 36(12): 110941-. doi: 10.1016/j.cclet.2025.110941

    4. [4]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    5. [5]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    6. [6]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    7. [7]

      Gaowa XingYuxuan LiHongren YaoQiang ZhangZengnan WuCaihou LinJin-Ming Lin . Tryptophan accumulation and inflammation of glioblastoma cells in a multicomponent microchip for gut-brain-axis simulation. Chinese Chemical Letters, 2025, 36(12): 111035-. doi: 10.1016/j.cclet.2025.111035

    8. [8]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    9. [9]

      Baolei LiDa WangMiao YuChaozheng HeXue LiJing ZhaiMdmahadi HasanChenxu ZhaoMin WangDingcai Shen . Accelerating multi-objective catalytic material design: A model-based method. Chinese Chemical Letters, 2025, 36(12): 110454-. doi: 10.1016/j.cclet.2024.110454

    10. [10]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    11. [11]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    12. [12]

      Yarui Li Huangjie Lu Yingzhe Du Jie Qiu Peng Lin Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562

    13. [13]

      Xia-Lin DaiYu-Hang YaoJian-Feng ZhenWei GaoJia-Mei ChenTong-Bu Lu . Reaction crystallization method based on deep eutectic solvents: A novel, green and efficient cocrystal synthesis approach. Chinese Chemical Letters, 2025, 36(11): 110413-. doi: 10.1016/j.cclet.2024.110413

    14. [14]

      Ke XuShulai LeiPanshuo WangWeiyi WangYuan FengJunsheng Feng . Unraveling the microscopic origin of out of plane magnetic anisotropy in Ⅵ3. Chinese Chemical Letters, 2025, 36(8): 110257-. doi: 10.1016/j.cclet.2024.110257

    15. [15]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    16. [16]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    17. [17]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    18. [18]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    19. [19]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    20. [20]

      Xiaoli ZhongLiangsheng ChenHao XuTianhang JiangZhengyi HuaFancheng TanXiaoya MaoZiquan FanZhiwei LiJun ZengShu-Hai Lin . Development of a comprehensive computational pipeline for cardiolipin atlas in an intermittent fasting model. Chinese Chemical Letters, 2025, 36(12): 111027-. doi: 10.1016/j.cclet.2025.111027

Metrics
  • PDF Downloads(0)
  • Abstract views(1183)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return