Citation:
Shuang-Lei Yang, Bang-Hong Zhou, Mei Lei, Lan-Ping Huang, Jun Pan, Wei Wu, Hong-Bo Zhang. Sub-100 nm hollow SnO2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances[J]. Chinese Chemical Letters,
;2015, 26(10): 1293-1297.
doi:
10.1016/j.cclet.2015.05.051
-
Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow SnO2@C nanoparticles (NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach. The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries (LIBs), the as-prepared hollow SnO2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 mAh g-1, and the current density is 3910 mA g-1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 mAh g-1 at the rate performances in which the current density is recovered to 156.4 mA g-1(0.2 C). Undoubtedly, sub-100 nm SnO2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.
-
-
-
[1]
[1] J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science 270(1995) 590-593.
-
[2]
[2] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(2001) 359-367.
-
[3]
[3] X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties, Chem. Mater. 21(2009) 2868-2874.
-
[4]
[4] M.G. Kim, J. Cho, Reversible and high-capacity nanostructured electrode materials for Li-ion batteries, Adv. Funct. Mater. 19(2009) 1497-1514.
-
[5]
[5] J.X. Li, Y. Zhao, N. Wang, L.H. Guan, A high performance carrier for SnO2 nanoparticles used in lithium ion battery, Chem. Commun. 47(2011) 5238-5240.
-
[6]
[6] J.M. Ma, J. Zhang, S.R. Wang, et al., Superior gas-sensing and lithium-storage performance SnO2 nanocrystals synthesized by hydrothermal method, CrystEng-Comm 13(2011) 6077-6081.
-
[7]
[7] G.F. Xia, N. Li, D.Y. Li, et al., Molten-salt decomposition synthesis of SnO2 nanoparticles as anode materials for lithium ion batteries, Mater. Lett. 65(2011) 3377-3379.
-
[8]
[8] J.J. Cai, Z.S. Li, S. Yao, et al., Close-packed SnO2 nanocrystals anchored on amorphous silica as a stable anode material for lithium-ion battery, Electrochim. Acta 74(2012) 182-188.
-
[9]
[9] K. Ui, S. Kawamura, N. Kumagai, Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method, Electrochim. Acta 76(2012) 383-388.
-
[10]
[10] W.S. Kim, Y. Hwa, J.H. Jeun, H.J. Sohn, S.H. Hong, Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application, J. Power Sources 225(2013) 108-112.
-
[11]
[11] W. Wei, L.X. Song, L. Guo, SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries, Chin. Chem. Lett. 26(2015) 124-128.
-
[12]
[12] H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials, J. Mater. Chem. 18(2008) 771-775.
-
[13]
[13] K. Shiva, S. Asokan, A.J. Bhattacharyya, Improved lithium cyclability and storage in a multi-sized pore ("differential spacers") mesoporous SnO2, Nanoscale 3(2011) 1501-1503.
-
[14]
[14] S.J. Ding, X.W.D. Lou, SnO2 nanosheet hollow spheres with improved lithium storage capabilities, Nanoscale 3(2011) 3586-3588.
-
[15]
[15] Z.Y. Wang, D.Y. Luan, F.Y.C. Boey, X.W. Lou, Fast formation of SnO2 nanoboxes with enhanced lithium storage capability, J. Am. Chem. Soc. 133(2011) 4738-4741.
-
[16]
[16] H.B. Wu, J.S. Chen, X.W. Lou, H.H. Hng, Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties, J. Phys. Chem. C 115(2011) 24605-24610.
-
[17]
[17] C. Wang, Y. Zhou, M. Ge, et al., Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity, J. Am. Chem. Soc. 132(2009) 46-47.
-
[18]
[18] P. Wu, M.Y. Du, H. Zhang, C.X. Zhai, D.R. Yang, Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage, ACS Appl. Mater. Interfaces 3(2011) 1946-1952.
-
[19]
[19] X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater. 18(2006) 2325-2329.
-
[20]
[20] X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties, Chem. Mater. 20(2008) 6562-6566.
-
[21]
[21] W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, L.J. Wan, Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater. 18(2008) 3941-3946.
-
[22]
[22] H. Li, H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating:present and future, Chem. Commun. 48(2012) 1201-1217.
-
[23]
[23] J. Liu, W. Li, A. Manthiram, Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries, Chem. Commun. 46(2010) 1437-1439.
-
[24]
[24] Y. Chen, Q.Z. Huang, J. Wang, Q. Wang, J.M. Xue, Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications, J. Mater. Chem. 21(2011) 17448-17453.
-
[25]
[25] S.M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett. 9(2008) 72-75.
-
[26]
[26] L. Wang, D. Wang, H.Z. Dong, F.X. Zhang, J. Jin, Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery, Nano Lett. 13(2013) 1711-1716.
-
[27]
[27] H. Park, T. Song, H. Han, et al., SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries, Electrochem. Commun. 22(2012) 81-84.
-
[28]
[28] N. Feng, L. Qiao, D.K. Hu, X.L. Sun, P. Wang, D.Y. He, Synthesis, characterization, and lithium-storage of ZnO-SnO2 hierarchical architectures, RSC Adv. 3(2013) 7758-7764.
-
[29]
[29] W. Wu, S.F. Zhang, J. Zhou, et al., Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres:a template- and surfactant-free solutionphase route, the growth mechanism, optical properties, and application as a photocatalyst, Chem. Eur. J. 17(2011) 9708-9719.
-
[30]
[30] S.Y. Liu, Y.H. Ma, S.P. Armes, C. Perruchot, J.F. Watts, Direct verification of the core-shell structure of shell cross-linked micelles in the solid state using X-ray photoelectron spectroscopy, Langmuir 18(2002) 7780-7784.
-
[31]
[31] Q.Y. Tian, W. Wu, L.L. Sun, et al., Tube-like ternary α-Fe2O3@SnO2@Cu2O sandwich heterostructures:synthesis and enhanced photocatalytic properties, ACS Appl. Mater. Interfaces 6(2014) 13088-13097.
-
[32]
[32] W. Wu, Q.G. He, H. Chen, J.X. Tang, L.B. Nie, Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles, Nanotechnology 18(2007) 145609.
-
[33]
[33] J.J. Chen, K. Yano, Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode, ACS Appl. Mater. Interfaces 5(2013) 7682-7687.
-
[34]
[34] X.F. Li, X.B. Meng, J. Liu, et al., Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage, Adv. Funct. Mater. 22(2012) 1647-1654.
-
[35]
[35] J.P. Liu, Y.Y. Li, X.T. Huang, et al., Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries, J. Mater. Chem. 19(2009) 1859-1864.
-
[36]
[36] X.W. Guo, X.P. Fang, Y. Sun, et al., Lithium storage in carbon-coated SnO2 by conversion reaction, J. Power Sources 226(2013) 75-81.
-
[37]
[37] M. He, L.X. Yuan, X.L. Hu, et al., A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries, Nanoscale 5(2013) 3298-3305.
-
[38]
[38] M. Zhang, Y.W. Li, E. Uchaker, et al., Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties, Nano Energy 2(2013) 769-778.
-
[1]
-
-
-
[1]
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
-
[2]
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
-
[3]
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
-
[4]
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
-
[5]
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
-
[6]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[7]
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
-
[8]
Bing Jiang , Gang Zou , Bi Luo , Yan Guo , Jingru Li , Wendi Zhang , Qianxiao Fan , Lehao Liu , Lihua Chu , Qiaobao Zhang , Meicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801
-
[9]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[10]
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
-
[11]
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
-
[12]
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
-
[13]
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
-
[14]
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
-
[15]
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
-
[16]
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
-
[17]
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
-
[18]
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
-
[19]
Shuo Zhang , Haitao Liao , Zhi-Qun Liu , Chong Yan , Jia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284
-
[20]
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(739)
- HTML views(19)