Citation: Marjaneh Samadizadeh, Ali Ahmadi Peyghan, Somayeh F. Rastegar. Sensing behavior of BN nanosheet toward nitrous oxide: A DFT study[J]. Chinese Chemical Letters, ;2015, 26(8): 1042-1045. doi: 10.1016/j.cclet.2015.05.048 shu

Sensing behavior of BN nanosheet toward nitrous oxide: A DFT study

  • Corresponding author: Ali Ahmadi Peyghan, 
  • Received Date: 25 December 2014
    Available Online: 11 May 2015

  • In order to develop a sensor for the detection of toxic N2O molecules, the interaction of pristine and Aldoped BN nanosheets with an N2O molecule was investigated using density functional theory calculations. It was found that unlike the pristine sheet, the Al-doped sheet can effectively interact with the N2O molecule so that its electronic properties and conductivity are dramatically changed. Webelieve that replacing a B atom of the BN sheet with an Al atom may be a good strategy for improving the sensitivity of these nanosheets toward N2O, which cannot be trapped and detected by the pristine sheet.
  • 加载中
    1. [1]

      [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

    2. [2]

      [2] S.P. Zhang, B. Liu, C.Y. Li, et al., Enhanced dispersibility and thermal stability of β-cyclodextrin functionalized graphene, Chin. Chem. Lett. 25 (2014) 355-358.

    3. [3]

      [3] Z.L. Cheng, X.X. Qin, Study on friction performance of graphene-based semi-solid grease, Chin. Chem. Lett. 25 (2014) 1305-1307.

    4. [4]

      [4] J. Beheshtian, H. Soleymanabadi, A.A. Peyghan, Z. Bagheri, A DFT study on the functionalization of a BN nanosheet with PC single bond X, (PC = phenyl carbamate, X = OCH3, CH3, NH2, NO2 and CN), Appl. Surf. Sci. 268 (2013) 436-441.

    5. [5]

      [5] J. Beheshtian, A.A. Peyghan, Z. Bagheri, Functionalization of BN nanosheet with N2H4 may be feasible in the presence of Stone-Wales defect, Struct. Chem. 24 (2013) 1565-1570.

    6. [6]

      [6] Y.N. Xu, W.Y. Ching, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures, Phys. Rev. B 44 (1991) 7787.

    7. [7]

      [7] L. Song, L.J. Ci, H. Lu, et al., Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett. 10 (2010) 3209-3215.

    8. [8]

      [8] J.Y. Dai, P. Giannozzi, J.M. Yuan, Adsorption of pairs of NOx molecules on singlewalled carbon nanotubes and formation of NO + NO3 from NO2, Surf. Sci. 603 (2009) 3234-3238.

    9. [9]

      [9] Y.H. Zhang, K.G. Zhou, X.C. Gou, et al., Effects of dopant and defect on the adsorption of carbon monoxide on graphitic boron nitride sheet: a first-principles study, Chem. Phys. Lett. 484 (2010) 266-270.

    10. [10]

      [10] J. Weimann, Toxicity of nitrous oxide, Best Pract. Res. Clin. Anaesthesiol. 17 (2003) 47-61.

    11. [11]

      [11] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, et al., General atomic and molecular electronic structure system, J. Comput. Chem. 14 (1993) 1347-1363.

    12. [12]

      [12] N.M. O'Boyle, A.L. Tenderholt, K.M. Langner, cclib: a library for package-independent computational chemistry algorithms, J. Comput. Chem. 29 (2008) 839-845.

    13. [13]

      [13] L.-H. Gan, J.-Q. Zhao, Theoretical investigation of [5,5], [9,0] and [10,10] closed SWCNTs, Physica E 41 (2009) 1249-1252.

    14. [14]

      [14] J. Beheshtian, A.A. Peyghan, Z. Bagheri, Adsorption and dissociation of Cl2 molecule on ZnO nanocluster, Appl. Surf. Sci. 258 (2012) 8171-8176.

    15. [15]

      [15] T.C. Dinadayalane, J.S. Murray, M.C. Concha, P. Politzer, J. Leszczynski, Reactivities of sites on (5,5) single-walled carbon nanotubes with and without a Stone-Wales defect, J. Chem. Theory Comp. 6 (2010) 1351-1357.

    16. [16]

      [16] V. Nagarajan, R. Chandiramouli, NiO nanocone as a CO sensor: DFT investigation, Struct. Chem. 25 (2014) 1765-1771.

    17. [17]

      [17] S. Tomic, B. Montanari, N.M. Harrison, The group III-V's semiconductor energy gaps predicted using the B3LYP hybrid functional, Physica E 40 (2008) 2125-2127.

    18. [18]

      [18] S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys. 19 (1970) 553-566.

    19. [19]

      [19] X.H. Deng, D.Y. Zhang, M.S. Si, M.S. Deng, The improvement of the adsorption abilities of some gas molecules on g-BN sheet by carbon doping, Physica E 44 (2011) 495-500.

    20. [20]

      [20] M. Moradi, N2O reduction over hexagonal BN nanosheet: effects of Stone-Wales defect and carbon pair doping, Struct. Chem. 25 (2014) 1457-1463.

    21. [21]

      [21] A. Ahmadi Peyghan, N.L. Hadipour, Z. Bagheri, Effects of Al doping and doubleantisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies, J. Phys. Chem. C 117 (2013) 2427-2432.

    22. [22]

      [22] M. Hjiri, L. El Mir, S.G. Leonardi, et al., Al-doped ZnO for highly sensitive CO gas sensors, Sens. Actuators B: Chem. 196 (2014) 413-420.

  • 加载中
    1. [1]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    2. [2]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    3. [3]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    4. [4]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    5. [5]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    6. [6]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    7. [7]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    8. [8]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    9. [9]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    10. [10]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    11. [11]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    12. [12]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    13. [13]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    14. [14]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    15. [15]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    16. [16]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    17. [17]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    18. [18]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    19. [19]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    20. [20]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

Metrics
  • PDF Downloads(0)
  • Abstract views(704)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return