Citation: Wei-Yi Zhang, Guo-Song Chen. A facile approach to prepare hybrid nanoparticles with morphology controlled by the thickness of glyco-shell[J]. Chinese Chemical Letters, ;2015, 26(7): 847-850. doi: 10.1016/j.cclet.2015.05.022 shu

A facile approach to prepare hybrid nanoparticles with morphology controlled by the thickness of glyco-shell

  • Corresponding author: Guo-Song Chen, 
  • Received Date: 1 April 2015
    Available Online: 28 April 2015

    Fund Project: National Natural Science Foundation of China (No. 91227203, 21474020 and 51322306) (No. 2011CB932503332)

  • Herein, we designed a novel amphiphilic triblock glycopolymer poly(oligo(ethyleneglycol) methacrylate)- block-poly(maltopyranoside methacrylate)-block-polystyrene (POMA-b-PMal-b-PS) via the combination of reversuble addition-fragmentation chain transfer (RAFT) polymerization and postpolymerization modification. The micelles with core-shell-corona structures were prepared by direct self-assembly of this glycopolymer in water. We found that these micelles can be used in in situ formation and stabilization of AuNPs. By controlling the thickness of glyco-shell, we successfully obtained Janus particles and raspberry-like particles with AuNPs in the sugar shell.
  • 加载中
    1. [1]

      [1] A. Ghadban, L. Albertin, Synthesis of glycopolymer architectures by reversibledeactivation radical polymerization, Polymers 5 (2013) 431–526.

    2. [2]

      [2] C. Zheng, Q.Q. Guo, Z.M. Wu, et al., Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins, Eur. J. Pharm. Sci. 49 (2013) 474–482.

    3. [3]

      [3] A.L. Parry, N.A. Clemson, J. Ellis, et al., ‘Multicopy Multivalent' glycopolymerstabilized gold nanoparticles as potential synthetic cancer vaccines, J. Am. Chem. Soc. 135 (2013) 9362–9365.

    4. [4]

      [4] T. Xing, X.Z. Yang, L.Y. Fu, L.F. Yan, Near infrared fluorescence probe and galactose conjugated amphiphilic copolymer for bioimaging of HepG2 cells and endocytosis, Polym. Chem. 4 (2013) 4442–4449.

    5. [5]

      [5] M.H. Mashhadizadeh, R.P. Talemi, Application of diazo-thiourea and gold nanoparticles in the design of a highly sensitive and selective DNA biosensor, Chin. Chem. Lett. 26 (2015) 160–166.

    6. [6]

      [6] X.H. Lv, L.P. Wang, G. Li, et al., Preparation and characterization of optically functional hollow sphere hybrid materials by surface-initiated RATRP and “click” chemistry, Chin. Chem. Lett. 24 (2013) 335–337.

    7. [7]

      [7] M. Takara, M. Toyoshima, H. Seto, Y. Hoshino, Y. Miura, Polymer-modified gold nanoparticles via RAFT polymerization: a detailed study for a biosensing application, Polym. Chem. 5 (2014) 931–939.

    8. [8]

      [8] A. Pfaff, A. Schallon, T.M. Ruhland, et al., Magnetic and fluorescent glycopolymer hybrid nanoparticles for intranuclear optical imaging, Biomacromolecules 12 (2011) 3805–3811.

    9. [9]

      [9] K. Kuroda, T. Ishida, M. Haruta, Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA, J. Mol. Catal. A: Chem. 298 (2009) 7–11.

    10. [10]

      [10] K. Esumi, T. Hosoya, A. Suzuki, K. Torigoe, Spontaneous formation of gold nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers, Langmuir 16 (2000) 2978–2980.

    11. [11]

      [11] L. Su, C.M. Wang, F. Polzer, et al., Glyco-inside micelles and vesicles directed by protection–deprotection chemistry, ACS Macro Lett. 3 (2014) 534–539.

    12. [12]

      [12] Y.X. Zhang, X.D. Hao, Z.P. Diao, Templated self-assembly of Au–TiO2 binary nanoparticles–nanotubes, Chin. Chem. Lett. 25 (2014) 874–878.

    13. [13]

      [13] T. Chen, M.X. Yang, X.J. Wang, L.H. Tan, H.Y. Chen, Controlled assembly of eccentrically encapsulated gold nanoparticles, J. Am. Chem. Soc. 130 (2008) 11858–11859.

    14. [14]

      [14] J. He, M.T. Perez, P. Zhang, et al., A general approach to synthesize asymmetric hybrid nanoparticles by interfacial reactions, J. Am. Chem. Soc. 134 (2012) 3639– 3642.

    15. [15]

      [15] W.P. Li, V. Shanmugam, C.C. Huang, et al., Eccentric inorganic-polymeric nanoparticles formation by thermal induced cross-linked esterification and conversion of eccentricity to raspberry-like Janus, Chem. Commun. 49 (2013) 1609–1611.

    16. [16]

      [16] N. Ali, S.Y. Park, Micellar structures of poly(styrene-b-4-vinylpyridine)s in THF/ Toluene mixtures and their functionalization with gold, Langmuir 24 (2008) 9279–9285.

    17. [17]

      [17] T. Premkumar, K. Lee, K.E. Geckeler, Shape-tailoring of gold nanostructures: can a detergent act as the reducing or protecting agent? Nanoscale 3 (2011) 1482– 1484.

    18. [18]

      [18] R. Fenger, E. Fertitta, H. Kirmse, A.F. Thü nemann, K. Rademann, Size dependent catalysis with CTAB-stabilized gold nanoparticles, Phys. Chem. Chem. Phys. 14 (2012) 9343–9349.

    19. [19]

      [19] Y.Wang, G.W.Wei, W.Q. Zhang, et al., Responsive catalysis of thermoresponsive micelle-supported gold nanoparticles, J. Mol. Catal. A: Chem. 266 (2007) 233–238.

  • 加载中
    1. [1]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    2. [2]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    3. [3]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Yiyang ShenZhen ZhangRuyi LiangTongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638

    6. [6]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    9. [9]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    10. [10]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    11. [11]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    12. [12]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    13. [13]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    14. [14]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    15. [15]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    16. [16]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    17. [17]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    18. [18]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

Metrics
  • PDF Downloads(0)
  • Abstract views(560)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return