Citation: Chao Wang, Yan-Hong Jiang, Chao-Guo Yan. Convenient synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] and spiro[acenaphthyl-3,4'-pyrano[2,3-c]pyrazoles] via fourcomponent reaction[J]. Chinese Chemical Letters, ;2015, 26(7): 889-893. doi: 10.1016/j.cclet.2015.05.018 shu

Convenient synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] and spiro[acenaphthyl-3,4'-pyrano[2,3-c]pyrazoles] via fourcomponent reaction

  • Corresponding author: Chao-Guo Yan, 
  • Received Date: 3 March 2015
    Available Online: 6 April 2015

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (No. 21172189) (No. 21172189)

  • The domino four-component reaction of hydrated hydrazine, dimethyl acetylenedicarboxylate, isatin and malononitrile or ethyl cycanoacetate in ethanol in the presence of triethylamine afforded the polysubstituted spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] derivatives in satisfactory yields. Under similar conditions, the four-component reaction containing acenaphthenequinone also resulted in the spiro[acenaphthyl-3,4'-pyrano[2,3-c]pyrazole] in good yields.
  • 加载中
    1. [1]

      [1] A.H. Abdel-Rahman, E.M. Keshk, M.A. Hanna, S.M. El-Bady, Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents, Bioorg. Med. Chem. 12 (2004) 2483–2488.

    2. [2]

      [2] M.A. Koch, A. Schuffenhauer, M. Scheck, et al., Charting biologically relevant chemical space: a structural classification of natural products, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 17272–17277.

    3. [3]

      [3] G.S. Singh, Z.Y. Desta, Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks, Chem. Rev. 112 (2012) 6104–6155.

    4. [4]

      [4] B.M. Trost, M.K. Brennan, Asymmetric syntheses of oxindole and indole spirocyclic alkaloid natural products, Synthesis 18 (2009) 3003–3025.

    5. [5]

      [5] N.R. Ball-Jones, J.J. Badillo, A.K. Franz, Strategies for the enantioselective synthesis of spirooxindoles, Org. Biomol. Chem. 10 (2012) 5165–5181.

    6. [6]

      [6] L. Hong, R. Wang, Recent advances in asymmetric organocatalytic construction of 3,3'-spirocyclic oxindoles, Adv. Synth. Catal. 355 (2013) 1023–1030.

    7. [7]

      [7] B. Tan, N.R. Candeias, C.F. Barbas III, Construction of bispirooxindoles containing three quaternary stereocenters in a cascade using a single multifunctional organocatalyst, Nat. Chem. 3 (2011) 473–4776.

    8. [8]

      [8] F. Shi, Z.L. Tao, S.W. Luo, S.J. Tu, L.Z. Gong, Scaffold-inspired enantioselective synthesis of biologically important spiro[pyrrolidin-3,20-oxindoles] with structural diversity through catalytic isatin-derived 1,3-dipolar cycloadditions, Chem. Eur. J. 18 (2012) 6885–6894.

    9. [9]

      [9] H. Deng, Y. Wei, M. Shi, Highly regio- and diastereoselective construction of spirocyclopenteneoxindoles through phosphine-catalyzed [3 + 2] annulation of Morita-Baylis-Hillman carbonates with isatylidene malononitriles, Org. Lett. 13 (2011) 3348–3351.

    10. [10]

      [10] X. Li, Y. Li, F. Peng, et al., Highly enantioselective one-pot synthesis of spirocyclopentaneoxindoles containing the oxime group by organocatalyzed michael addition/ISOC/fragmentation sequence, Org. Lett. 13 (2011) 6160–6163.

    11. [11]

      [11] S.C. Kuo, L.J. Huang, H. Nakamura, Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3- c]pyrazol-6-one derivatives, J. Med. Chem. 17 (1984) 539–544.

    12. [12]

      [12] J.L. Wang, D. Liu, Z.J. Zheng, et al., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 7124–7129.

    13. [13]

      [13] V.D. Dyachenko, E.B. Rusanov, Novel approaches to synthesis of 4-alkyl-6-amino- 5-cyano-3-methyl(propyl, phenyl)-2H,4H-pyrano[2,3-c]pyrazoles, Chem. Heterocycl. Compd. 40 (2004) 231–240.

    14. [14]

      [14] A. Shaabani, E. Soleimani, A. Sarvary, A.H. Rezayan, A simple and efficient approach to the synthesis of 4H-furo[3,4-b]pyrans via a three-component reaction of isocyanides, Bioorg. Med. Chem. Lett. 18 (2008) 3968–3970.

    15. [15]

      [15] A. Shaabani, A. Sarvary, A.H. Rezayan, S. Keshipour, Synthesis of fully substituted pyrano[2,3-c]pyrazole derivatives via a multicomponent reaction of isocyanides, Tetrahedron 65 (2009) 3492–3495.

    16. [16]

      [16] Y.M. Litvinov, A.A. Shestopalov, L.A. Rodinovskaya, A.M. Shestopalov, New convenient four-component synthesis of 6-amino-2,4-dihydropyrano[2,3-c]pyrazol- 5-carbonitriles and one-pot synthesis of 6'-aminospiro[(3H)-indol-3,4'-pyrano[2,3-c]pyrazol]-(1H)-2-on-5'-carbonitriles, J. Comb. Chem. 11 (2009) 914–919.

    17. [17]

      [17] H.M. Al-Matar, K.D. Khalil, A.Y. Adam, M.H. Elnagdi, Green one pot solvent-free synthesis of pyrano[2,3-c]-pyrazoles and pyrazolo[1,5-a]pyrimidines, Molecules 15 (2010) 6619–6629.

    18. [18]

      [18] K. Kanagaraj, K. Pitchumani, Solvent-free multicomponent synthesis of pyranopyrazoles; per-6-amino-β-cyclodextrin as a remarkable catalyst and host, Tetrahedron Lett. 51 (2010) 3312–3316.

    19. [19]

      [19] H. Mecadon, M.D.R. Rohman, I. Kharbangar, et al., L-Proline as an efficient catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[ 2,3-c]pyrazole-5-carbonitriles in water, Tetrahedron Lett. 52 (2011) 3228–3231.

    20. [20]

      [20] S. Muramulla, C.G. Zhao, A new catalytic mode of the modularly designed organocatalysts (MDOs): enantioselective synthesis of dihydropyrano[2,3-c]pyrazoles, Tetrahedron Lett. 52 (2011) 3905–3908.

    21. [21]

      [21] A.M. Shestopalov, Y.M. Emeliyanova, A.A. Shestopalov, et al., Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds. Part 1: single-stage synthesis of 10-substituted 6-amino-spiro-4-(piperidine-4')-2H,4H-pyrano[2,3-c]pyrazole-5-carbonitriles, Tetrahedron 59 (2003) 7491–7496.

    22. [22]

      [22] G. Vasuki, K. Kumaravel, Rapid four-component reactions in water: synthesis of pyranopyrazoles, Tetrahedron Lett. 49 (2008) 5636–5638.

    23. [23]

      [23] S. Gogoi, C.G. Zhao, Organocatalyzed enantioselective synthesis of 6-amino-5- cyanodihydropyrano[2,3-c]pyrazoles, Tetrahedron Lett. 50 (2009) 2252–2255.

    24. [24]

      [24] A. Siddekha, A. Nizam, M.A. Pasha, An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4'-methoxyphenyl)-5-cyano- 3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole using density functional theory, Spectrochim. Acta A 81 (2011) 431–440.

    25. [25]

      [25] H. Mecadon, M.R. Rohman, M. Rajbangshi, B. Myrboh, γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4- dihydropyrano[2,3-c]pyrazole-5-carbonitriles in aqueous medium, Tetrahedron Lett. 52 (2011) 2523–2525.

    26. [26]

      [26] H. Mecadon, M.R. Rohman, I. Kharbangar, et al., L-Proline as an efficient catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[ 2,3-c]pyrazole-5-carbonitriles in water, Tetrahedron Lett. 52 (2011) 3228–3231.

    27. [27]

      [27] S.H.S. Azzam, M.A. Pasha, Simple and efficient protocol for the synthesis of novel dihydro-1H-pyrano[2,3-c]pyrazol-6-ones via a one-pot four-component reaction, Tetrahedron Lett. 53 (2012) 6834–6837.

    28. [28]

      [28] S.R. Mandha, S. Siliveri, M. Alla, et al., Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles, Bioorg. Med. Chem. Lett. 22 (2012) 5272–5278.

    29. [29]

      [29] A.M. Zonouz, I. Eskandari, H.R. Khavasi, A green and convenient approach for the synthesis of methyl 6-amino-5-cyano-4-aryl-2,4-dihydropyrano[2,3-c]pyrazole- 3-carboxylates via a one-pot, multi-component reaction in water, Tetrahedron Lett. 53 (2012) 5519–5522.

    30. [30]

      [30] J. Albadi, A. Mansournezhad, Z. Derakhshandeh, CuO-CeO2 nanocomposite: a highly efficient recyclable catalyst for the multicomponent synthesis of 4Hbenzo[ b]pyran derivatives, Chin. Chem. Lett. 24 (2013) 821–824.

    31. [31]

      [31] J.X. Yu, Y.B. Zhou, T.H. Shen, et al., Novel and efficient one-pot synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]derivatives catalyzed by L-proline in aqueous medium, J. Chem. Res. 37 (2013) 365–368.

    32. [32]

      [32] S. Pal, M.D. Khan, S. Karamthulla, S.J. Abbas, L.H. Choudhury, One pot fourcomponent reaction for the efficient synthesis of spiro[indoline-3,40-pyrano[2,3-c]pyrazole]-30-carboxylate derivatives, Tetrahedron Lett. 54 (2013) 5434–5440.

    33. [33]

      [33] Y. Zou, Y. Hu, H. Liu, D.Q. Shi, Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] derivatives, ACS Comb. Sci. 14 (2012) 38–43.

    34. [34]

      [34] S. Ahadi, Z. Yasaei, A. Bazgir, A clean and one-pot synthesis of spiroindolinepyranopyrazoles, J. Heterocycl. Chem. 47 (2010) 1090–1094.

    35. [35]

      [35] X.Q. Liu, X.L. Xu, X. Wang, et al., A facile and convenient way to functionalized trifluoromethylated spirocyclic[indole-3,4-pyrano[2,3-c]pyrazole] derivatives, Tetrahedron Lett. 54 (2013) 4451–4455.

    36. [36]

      [36] Y. Sun, Q. Wu, L.J. Zhang, C.G. Yan, Efficient synthesis of the functionalized spiro[indoline-3,4'-pyridine] via four-component reaction, Chin. J. Chem. 30 (2012) 1548–1554.

    37. [37]

      [37] Y. Sun, J. Sun, C.G. Yan, Synthesis of 10-aryl-2'-(2-oxoindolin-3-yl)spiro[indoline- 3,5'-pyrroline]-2,3'-dione via one-pot reaction of arylamines, acetone, and isatins, Tetrahedron Lett. 53 (2012) 3647–3649.

    38. [38]

      [38] Y. Han, Q. Wu, J. Sun, C.G. Yan, Synthesis of the functionalized spiro[indoline-3,5'-pyrroline]-2,2'-diones via three-component reactions of arylamines, acetylenedicarboxylates, and isatins, Tetrahedron 68 (2012) 8539–8544.

    39. [39]

      [39] J. Sun, Y. Sun, H. Gao, C.G. Yan, Synthesis of spiro[indoline-3,2'-quinoline] derivatives through a four-component reaction, Eur. J. Org. Chem. 10 (2012) 1976–1983.

    40. [40]

      [40] L. Wu, J. Sun, C.G. Yan, Facile synthesis of spiro[indoline-3,3'-pyrrolo[1,2-a]quinolines] and spiro[indoline-3,1'-pyrrolo[2,1-a]isoquinolines] via 1,3-dipolar cycloaddition reactions of heteroaromatic ammonium salts with 3-phenacylideneoxindoles, Org. Biomol. Chem. 10 (2012) 9452–9463.

    41. [41]

      [41] J. Sun, Y. Sun, H. Gong, Y.J. Xue, C.G. Yan, Synthesis of spiro[dihydropyridineoxindoles] via three-component reaction of arylamine, isatin and cyclopentane-1,3-dione, Beilstein J. Org. Chem. 9 (2013) 8–14.

    42. [42]

      [42] D.M. Pore, P.B. Patil, D.S. Gaikwad, et al., Green access to novel spiro pyranopyrazole derivatives, Tetrahedron Lett. 54 (2013) 5876–5878.

  • 加载中
    1. [1]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    2. [2]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    3. [3]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    4. [4]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    5. [5]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    6. [6]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    7. [7]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    8. [8]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    9. [9]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    10. [10]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    11. [11]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    12. [12]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    13. [13]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    14. [14]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    15. [15]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    16. [16]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    17. [17]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    18. [18]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    19. [19]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    20. [20]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

Metrics
  • PDF Downloads(0)
  • Abstract views(608)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return