Citation: Shuang-Jin Zhang, Qi Wang, Ming Cheng, Xiao-Hong Qian, Yang Yang, Ju-Li Jiang, Le-Yong Wang. A switchable bistable [2]rotaxane based on phosphine oxide functional group[J]. Chinese Chemical Letters, ;2015, 26(7): 885-888. doi: 10.1016/j.cclet.2015.05.015 shu

A switchable bistable [2]rotaxane based on phosphine oxide functional group

  • Corresponding author: Yang Yang,  Ju-Li Jiang, 
  • Received Date: 30 March 2015
    Available Online: 17 April 2015

    Fund Project:

  • A switchable bistable rotaxane based phosphine oxide functional group-containingmacrocycle has been constructed successfully, in which the macrocycle can be easily switched between dibenzylammonium and triazole recognition sites by using the simple base/acid stimuli.
  • 加载中
    1. [1]

      [1] (a) B. Champin, P. Mobian, J.P. Sauvage, Transition metal complexes as molecular machine prototypes, Chem. Soc. Rev. 36 (2007) 358–366; (b) W. Zhou, S. Zhang, G. Li, et al., Fluorescent alteration on a bistable molecular shuttle, Chem. Phys. Chem. 10 (2009) 2066–2072; (c) X. Ma, H. Tian, Bright functional rotaxanes, Chem. Soc. Rev. 39 (2010) 70–80; (d) S.Y. Dong, J.Y. Yuan, F.H. Huang, A pillar[5]arene/imidazolium [2]rotaxane: solvent-and thermo-driven molecular motions and supramolecular gel formation, Chem. Sci. 5 (2014) 247–252; (e) M. Liu, S. Li, M. Hu, F. Wang, F. Huang, Selectivity algorithm for the formation of two cryptand/paraquat catenanes, Org. Lett. 12 (2010) 760–763; (f) P. Wei, X. Yan, J. Li, et al., Novel [2]rotaxanes based on the recognition of pillar[5]arenes to an alkane functionalized with triazole moieties, Tetrahedron 68 (2012) 9179–9185; (g) M. Xue, Y. Yang, X. Chi, X. Yan, F. Huang, Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications, Chem. Rev. (2015), http://dx.doi.org/10.1021/cr5005869.

    2. [2]

      [2] (a) D.H. Qu, H. Tian, Novel and efficient templates for assembly of rotaxanes and catenanes, Chem. Sci. 2 (2011) 1011–1015; (b) Z. Zhang, C. Han, G. Yu, F. Huang, A solvent-driven molecular spring, Chem. Sci. 3 (2012) 3026–3031; (c) X. Han, F. Hu, H. Ge, S. Liu, J. Yin, The application of templated-directed directed clipping approach in constructing mechanically interlocked molecules based on N-hetero hetero crown ethers, Prog. Chem. 6 (2015), http://dx.doi.org/ 10.7536/PC150129.

    3. [3]

      [3] (a) K.D. Zhang, X. Zhao, G.T. Wang, et al., Foldamer-tuned switching kinetics and metastability of [2]rotaxanes, Angew. Chem. Int. Ed. 50 (2011) 9866–9870; (b) Z. Meng, J.F. Xiang, C.F. Chen, Tristable [n]rotaxanes: from molecular shuttle to molecular cable car, Chem. Sci. 5 (2014) 1520–1525; (c) H. Wang, Z.J. Zhang, H.Y. Zhang, Y. Liu, Synthesis of a bistable [3]rotaxane and its pH-controlled intramolecular charge-transfer behavior, Chin. Chem. Lett. 24 (2013) 563–567; (d) Z. Yang, X. Liu, S. Zhao, J. He, Chemically driven [2]rotaxane molecular shuttles, Prog. Chem. 26 (2014) 1899–1913; (e) L.H. Wang, Z.J. Zhang, H.Y. Zhang, H.L. Wu, Y. Liu, A twin-axial[5]pseudorotaxane based on cucurbit[8]uril and a-cyclodextrin, Chin. Chem. Lett. 24 (2013) 949–952.

    4. [4]

      [4] Y. Zhao, Y. Li, S.W. Lai, et al., Construction of a functional [2]rotaxane with multilevel fluorescence responses, Org. Biomol. Chem. 9 (2011) 7500–7503.

    5. [5]

      [5] Y.C. You, M.C. Tzeng, C.C. Lai, S.H. Chiu, Using oppositely charged ions to operate a three-station [2]rotaxane in two different switching modes, Org. Lett. 14 (2012) 1046–1049.

    6. [6]

      [6] Z.J. Zhang, M. Han, H.Y. Zhang, Y. Liu, A double-leg donor–acceptor molecular elevator: new insight into controlling the distance of two platforms, Org. Lett. 15 (2013) 1698–1701.

    7. [7]

      [7] V.V. Grushin, Mixed phosphine–phosphine oxide ligands, Chem. Rev. 104 (2004) 1629–1662.

    8. [8]

      [8] (a) A. Theil, C. Mauve, M.T. Adeline, A. Marinetti, J.P. Sauvage, Phosphoruscontaining [2]catenanes as an example of interlocking chiral structures, Angew. Chem. Int. Ed. 45 (2006) 2104–2107; (b) R. Ahmed, A. Altieri, D.M. D'Souza, et al., Phosphorus-based functional groups as hydrogen bonding templates for rotaxane formation, J. Am. Chem. Soc. 133 (2011) 12304–12310; (c) L. Liu, Y. Liu, P. Liu, et al., Phosphine oxide functional group based three-station molecular shuttle, Chem. Sci. 4 (2013) 1701–1706.

    9. [9]

      [9] M. Malkoch, K. Schleicher, E. Drockenmuller, et al., Structurally diverse dendritic libraries: a highly efficient functionalization approach using click chemistry, Macromolecules 38 (2005) 3663–3678.

    10. [10]

      [10] Z.J. Zhang, H.Y. Zhang, H. Wang, Y. Liu, A twin-axial hetero[7]rotaxane, Angew. Chem. Int. Ed. 50 (2011) 10834–10838.

    11. [11]

      [11] B.T.V. Srinivas, A.R. Maadhur, S. Bojja, Total synthesis of racemic, natural (+) and unnatural (-) scorzocreticin, Tetrahedron 70 (2014) 8161–8167.

    12. [12]

      [12] Q. Wang, M. Cheng, S. Xiong, et al., P5O functional group-containing cryptands: from supramolecular complexes to poly[2]pseudorotaxanes, Chem. Commun. 51 (2015) 2667–2670.

    13. [13]

      [13] L.Z. Liu, C.H. He, L. Yang, et al., Novel C1-symmetric chiral crown ethers bearing rosin acids groups: synthesis and enantiomeric recognition for ammonium salts, Tetrahedron 70 (2014) 9545–9553.

    14. [14]

      [14] Z. Xu, Preparation of supramolecular structures with polymer attached, Faming Zhuanli Shenqing (2014), CN 103665388 A 20140326.

    15. [15]

      [15] (a) Z.G. Luo, Y. Zhao, F. Xu, et al., Synthesis and thermal properties of novel calix[4]arene derivatives containing 1,2,3-triazole moiety via K2CO3-catalyzed 1,3-dipolar cycloaddition reaction, Chin. Chem. Lett. 25 (2014) 1346–1348; (b) B.T. Zhao, X.M. Zhu, X.H. Chen, Z.N. Yan, W.M. Zhu, Novel clicked tetrathiafulvalene-calix[4]arene assemblies: synthesis and intermolecular electron transfer toward p-chloranil, Chin. Chem. Lett. 24 (2013) 573–577.

    16. [16]

      [16] H.P. Jacquot de Rouville, J. Iehl, C.J. Bruns, et al., A neutral naphthalene diimide[2]rotaxane, Org. Lett. 14 (2012) 5188–5191.

  • 加载中
    1. [1]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    2. [2]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    3. [3]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    6. [6]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    7. [7]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    8. [8]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    9. [9]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    10. [10]

      Ying-Mei ZhongZi-Jun XiaYu-Hang HuLi-Peng ZhouLi-Xuan CaiQing-Fu Sun . Effective separation of phenanthrene from isomeric anthracene using a water-soluble macrocycle-based cage. Chinese Chemical Letters, 2025, 36(4): 110164-. doi: 10.1016/j.cclet.2024.110164

    11. [11]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    12. [12]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    13. [13]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    14. [14]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    15. [15]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    16. [16]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    17. [17]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    18. [18]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    19. [19]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    20. [20]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

Metrics
  • PDF Downloads(0)
  • Abstract views(617)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return