Citation: Mu-Hua Wang, Zhong-Ping Huang, Jun-Wei Liu, Jie He, Jia-Jie Zhang, Yan Zhu. Iodide analysis by ion chromatography on a new stationary phase of polystyrene-divinylbenzene agglomerated with polymerized-epichlorohydrin-dimethylamine[J]. Chinese Chemical Letters, ;2015, 26(8): 1026-1030. doi: 10.1016/j.cclet.2015.05.002 shu

Iodide analysis by ion chromatography on a new stationary phase of polystyrene-divinylbenzene agglomerated with polymerized-epichlorohydrin-dimethylamine

  • Corresponding author: Yan Zhu, 
  • Received Date: 29 December 2014
    Available Online: 14 April 2015

    Fund Project: This research was financially supported by Natural Science Foundation of Zhejiang Province (Nos. Y4110532, LQ13B050001, LY12B05003) (Nos. Y4110532, LQ13B050001, LY12B05003) and Major National Scientific Instrument and Equipment Development Special of China (No. 2012YQ09022903) (No. FX2013148)

  • A new stationary phase for iodide ion analysis has been developed. The cationic polymerepichlorohydrin-dimethylamine (PEPI-DMA) was served as modifier in synthesizing polyelectrolyte sorbents and the macroporous polystyrene-divinylbenzene (PS-DVB) resin was used as support. The positively charged polymer (PEPI-DMA) was electrostatically bonded to a negatively charged particle (PS-DVB sulfonated). The new stationary phase was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), elemental analysis, chemical adsorption and desorption measurements. The chromatographic evaluation of the new stationary phase was performed using various anions with a conductivity detector. The new stationary phase was also applied to the determination of iodide directly with a DC amperometric detector using a platinum working electrode and an Ag/AgCl reference electrode. The chromatographic conditions were optimized and the eluent solution contained 5 mmol/L HNO3 and 15 mmol/L NaNO3 at a flow rate of 1.0 mL/min and column temperature of 30 ℃. The applied voltage of the DC amperometric detector was 0.9 V. Under the optimum conditions, the linear range of the method was 0.2-50 mg/L for iodide ion with a correlation coefficient of 0.9990. The detection limit was 0.05 mg/L (calculated at S/N = 3) and the relative standard deviations (RSD, n = 6) were all less than 1% for retention time, peak area and peak height. This method was also utilized for the determination of iodide ions in samples of povidone iodine solution and kelp samples with satisfactory results.
  • 加载中
    1. [1]

      [1] D. Gao, F.C. Tan, W.P. Wang, L.L. Wang, Resolution enhancement in hydrophobic interaction chromatography via electrostatic interactions, Chin. Chem. Lett. 24 (2013) 419-421.

    2. [2]

      [2] Q.J. Peng, J.J. Yang, Preparation and chromatographic characteristics of a novel 2,6-dimethyl-β-CD bonded HPLC chiral stationary phase, Chin. Chem. Lett. 25 (2014) 1416-1418.

    3. [3]

      [3] Z.P. Huang, H.W. Wu, F.L. Wang, et al., Polystyrene-divinylbenzene stationary phases agglomerated with quaternized multi-walled carbon nanotubes for anion exchange chromatography, J. Chromatogr. A 1294 (2013) 152-156.

    4. [4]

      [4] L.M. Nair, R. Saari-Nordhaus, R.M. Montgomery, Applications of a new methacrylate-based anion stationary phase for the separation of inorganic anions, J. Chromatogr. A 789 (1997) 127-134.

    5. [5]

      [5] A.V. Pirogov, O.V. Krokhin, M.M. Platonov, Y.I. Deryugina, O.A. Shpigun, Ionchromatographic selectivity of polyelectrolyte sorbents based on some aliphatic and aromatic ionenes, J. Chromatogr. A 884 (2000) 31-39.

    6. [6]

      [6] A.V. Pirogov, M.M. Platonov, O.A. Shpigun, Polyelectrolyte sorbents based on aliphatic ionenes for ion chromatography, J. Chromatogr. A 850 (1999) 53-63.

    7. [7]

      [7] O.V. Krokhin, A.D. Smolenkov, N.V. Svintsova, O.N. Obrezkov, O.A. Shpigun, Modified silica as a stationary phase for ion chromatography, J. Chromatogr. A 706 (1995) 93-98.

    8. [8]

      [8] M.P. Raskop, A. Grimm, A. Seubert, Polystyrene immobilized ionenes as novel stationary phase for ion chromatography, Microchim. Acta 158 (2007) 85-94.

    9. [9]

      [9] N.N. Wang, S.W. He, Y. Zhu, Low-level bromate analysis by ion chromatography on a polymethacrylate-based monolithic column followed by a post-column reaction, Eur. Food Res. Technol. 235 (2012) 685-692.

    10. [10]

      [10] Y.Y. Zhong, W.F. Zhou, P.M. Zhang, Y. Zhu, Preparation, characterization, and analytical applications of a novel polymer stationary phase with embedded or grafted carbon fibers, Talanta 82 (2010) 1439-1447.

    11. [11]

      [11] E. Unsal, T. Irmak, E. Durusoy, M. Tuncel, A. Tuncel, Monodisperse porous polymer particles with polyionic ligands for ion exchange separation of proteins, Anal. Chim. Acta 570 (2006) 240-248.

    12. [12]

      [12] F. Gasparrini, D. Misiti, R. Rompietti, C. Villani, New hybrid polymeric liquid chromatography chiral stationary phase prepared by surface-initiated polymerization, J. Chromatogr. A 1064 (2005) 25-38.

    13. [13]

      [13] S.D. Chambers, C.A. Pohl, C.A. Lucy, Agglomerated carbon based phases for anion exchange chromatography, J. Chromatogr. A 1218 (2011) 263-269.

    14. [14]

      [14] A.A. Kazarian, M.R. Taylor, P.R. Haddada, P.N. Nesterenkoa, B. Paull, Ion-exchange and hydrophobic interactions affecting selectivity for neutral and charged solutes on three structurally similar agglomerated ion-exchange and mixed-mode stationary phases, Anal. Chim. Acta 803 (2013) 143-153.

    15. [15]

      [15] Z.P. Huang, L.L. Xi, Q. Subhani, et al., Covalent functionalization of multi-walled carbon nanotubes with quaternary ammonium groups and its application in ion chromatography, Carbon 62 (2013) 127-134.

    16. [16]

      [16] E.F. Hilder, F. Svec, J.M.J. Fré chet, Latex-functionalized monolithic columns for the separation of carbohydrates by micro anion-exchange chromatography, J. Chromatogr. A 1053 (2004) 101-106.

    17. [17]

      [17] P. Zakaria, J.P. Hutchinson, N. Avdalovic, Y. Liu, P.R. Haddad, Latex-coated polymeric monolithic ion-exchange stationary phases. 2. Micro-ion chromatography, Anal. Chem. 77 (2005) 417-423.

    18. [18]

      [18] R.W. Slingsby, C.A. Pohl, Anion-exchange selectivity in latex-based columns for ion chromatography, J. Chromatogr. A 458 (1988) 241-253.

    19. [19]

      [19] M. Piran, V. Kotlyar, D.D. Medina, et al., End-selective functionalization of carbon nanotubes. Use of DOE for the optimization of a DNA probe attachment and hybridization using an enzymatic amplifying system, J. Mater. Chem. 19 (2009) 631-638.

    20. [20]

      [20] Q.Y. Yue, Q. Li, B.Y. Gao, Y. Wang, Kinetics of adsorption of disperse dyes by polyepichlorohydrin-dimethylamine cationic polymer/bentonite, Sep. Purif. Technol. 54 (2007) 279-290.

    21. [21]

      [21] Q. Li, Q.Y. Yue, Y. Su, B.Y. Gao, J. Li, Two-step kinetic study on the adsorption and desorption of reactive dyes at cationic polymer/bentonite, J. Hazard. Mater. 165 (2009) 1170-1178.

    22. [22]

      [22] Q. Li, Q.Y. Yue, Y. Su, B.Y. Gao, Equilibrium and a two-stage batch adsorber design for reactive or disperse dye removal to minimize adsorbent amount, Bioresour. Technol. 102 (2011) 5290-5296.

    23. [23]

      [23] Q. Li, Q.Y. Yue, Y. Su, B.Y. Gao, L. Fu, Cationic polyelectrolyte/bentonite prepared by ultrasonic technique and its use as adsorbent for Reactive Blue K-GL dye, J. Hazard. Mater. 147 (2007) 370-380.

    24. [24]

      [24] Q. Kang, W.Z. Zhou, Q. Li, et al., Adsorption of anionic dyes on poly(epicholorohydrin dimethylamine) modified bentonite in single and mixed dye solutions, Appl. Clay Sci. 45 (2009) 280-287.

    25. [25]

      [25] D. Gamallo-Lorenzo, M.D.C. Barciela-Alonso, A. Moreda-Piñ eiro, A. Bermejo-Barrera, P. Bermejo-Barrera, Microwave-assisted alkaline digestion combined with microwave-assisted distillation for the determination of iodide and total iodine in edible seaweed by catalytic spectrophotometry, Anal. Chim. Acta 542 (2005) 287-295.

    26. [26]

      [26] Z.P. Huang, Z.Y. Zhu, Q. Subhani, et al., Simultaneous determination of iodide and iodate in povidone iodine solution by ion chromatography with homemade and exchange capacity controllable columns and column-switching technique, J. Chromatogr. A 1251 (2012) 154-159.

    27. [27]

      [27] T. Hirokawa, T. Ichihara, K. Ito, A.R. Timerbaev, Trace ion analysis of seawater by capillary electrophoresis: determination of iodide using transient isotachophoretic preconcentration, Electrophoresis 24 (2003) 2328-2334.

    28. [28]

      [28] W.Z. Hu, P.J. Yang, K. Hasebe, P.R. Haddad, K. Tanaka, Rapid and direct determination of iodide in seawater by electrostatic ion chromatography, J. Chromatogr. A 956 (2002) 103-107.

    29. [29]

      [29] V.T.P. Nguyen, V. Piersoel, T.E. Mahi, Urine iodide determination by ion-pair reversed-phase high performance liquid chromatography and pulsed amperometric detection, Talanta 99 (2012) 532-537.

    30. [30]

      [30] A.K. Singh, S. Mehtab, Polymeric membrane sensors based on Cd(II) Schiff base complexes for selective iodide determination in environmental and medicinal samples, Talanta 74 (2008) 806-814.

    31. [31]

      [31] T.K. Malongo, S. Patris, P. Macours, et al., Highly sensitive determination of iodide by ion chromatography with amperometric detection at a silver-based carbon paste electrode, Talanta 76 (2008) 540-547.

    32. [32]

      [32] M. Yaqoob, A. Rehman, A. Waseem, A. Nabi, Determination of iodide using flow injection with acidic potassium permanganate chemiluminescence detection, Luminescence 21 (2006) 221-225.

    33. [33]

      [33] S. Mishra, V. Singh, A. Jain, K.K. Verma, Determination of iodide by derivatization to 4-iodo-N,N-dimethylaniline and gas chromatography-mass spectrometry, Analyst 125 (2000) 459-464.

    34. [34]

      [34] Q.Y. Yue, B.Y. Gao, Y. Wang, et al., Synthesis of polyamine flocculants and their potential use in treating dye wastewater, J. Hazard. Mater. 152 (2008) 221-227.

  • 加载中
    1. [1]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    2. [2]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    3. [3]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    4. [4]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    5. [5]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    6. [6]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    7. [7]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    8. [8]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    9. [9]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    10. [10]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    11. [11]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    12. [12]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    13. [13]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    14. [14]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    15. [15]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    16. [16]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    17. [17]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    18. [18]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    19. [19]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    20. [20]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

Metrics
  • PDF Downloads(0)
  • Abstract views(683)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return