Citation: Bin Chen, Lu Sun, Yong-Shu Xie. Modulation of photovoltaic behavior of dye-sensitized solar cells by electron donors of porphyrin dyes and cosensitization[J]. Chinese Chemical Letters, ;2015, 26(7): 899-904. doi: 10.1016/j.cclet.2015.04.021 shu

Modulation of photovoltaic behavior of dye-sensitized solar cells by electron donors of porphyrin dyes and cosensitization

  • Corresponding author: Yong-Shu Xie, 
  • Received Date: 15 January 2015
    Available Online: 26 March 2015

    Fund Project:

  • Porphyrin dyes have received great attention due to their excellent photovoltaic performance in dyesensitized solar cells (DSSCs). In this work, dyes XC1-XC3 were synthesized by introducing various numbers of bis(4-methoxyphenyl)amino and p-hexyloxyphenyl groups to porphyrin meso-positions. The XC1 molecule contains two p-hexyloxyphenyl groups, and its DSSCs showed the power conversion efficiency of 4.81%. For XC2 and XC3, the replacement of p-hexyloxyphenyl with diphenylamino groups can effectively enhance the light harvesting around 500 nm. However, the highest occupied molecular orbitals (HOMOs) were elevated too much, which suppressed the dye regeneration processes, leading to low cell efficiencies of 2.51% and 1.27% for XC2, and XC3, respectively. To further improve the cell performance, an anthracene derivative C1 was used as the cosensitizer for XC1, which increased both the Jsc and Voc values, with an improved efficiency of 5.75%.
  • 加载中
    1. [1]

      [1] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737–740.

    2. [2]

      [2] Z.L. Ku, X. Li, G.H. Liu, et al., Transparent NiS counter electrodes for thiolate/ disulfide mediated dye-sensitized solar cells, J. Mater. Chem. A 1 (2013) 237–240.

    3. [3]

      [3] Z. Li, Q.Q. Li, Molecular engineering and cosensitization for developing efficient solar cells based on porphyrin dyes with an extended π-framework, Sci. China Chem. 57 (2014) 1491.

    4. [4]

      [4] J. Zeng, T.L. Zhang, X.F. Zang, et al., D-A-π-A organic sensitizers containing a benzothiazole moiety as an additional acceptor for use in solar cells, Sci. China Chem. 56 (2013) 505–513.

    5. [5]

      [5] Y.R. Gao, L.L. Chu, W. Guo, T.L. Ma, Synthesis and photoelectric properties of an organic dye containing benzo[1,2-b:4,5-b']dithiophene for dye-sensitized solar cells, Chin. Chem. Lett. 24 (2013) 149–152.

    6. [6]

      [6] S.Y. Qu, J.L. Hua, H. Tian, New D-π-A dyes for efficient dye-sensitized solar cells, Sci. China Chem. 55 (2012) 677–697.

    7. [7]

      [7] L.L. Li, E.W.G. Diau, Porphyrin-sensitized solar cells, Chem. Soc. Rev. 42 (2013) 291–304.

    8. [8]

      [8] C.L. Wang, Y.C. Chang, C.M. Lan, et al., Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells, Energy Environ. Sci. 4 (2011) 1788–1795.

    9. [9]

      [9] S.L. Wu, H.P. Lu, H.T. Yu, et al., Design and characterization of porphyrin sensitizers with a push-pull framework for highly efficient dye-sensitized solar cells, Energy Environ. Sci. 3 (2010) 949–955.

    10. [10]

      [10] S. Mathew, A. Yella, P. Gao, et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem. 6 (2014) 242–247.

    11. [11]

      [11] X. Sun, Y.Q. Wang, X. Li, et al., Cosensitizers for simultaneous filling up of both absorption valleys of porphyrins: a novel approach for developing efficient panchromatic dye-sensitized solar cells, Chem. Commun. 50 (2014) 15609–15612.

    12. [12]

      [12] Y.Q. Wang, B. Chen, W.J. Wu, et al., Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor: from molecular design to cosensitization, Angew. Chem. Int. Ed. 53 (2014) 10779–10783.

    13. [13]

      [13] A. Yella, H.W. Lee, H.N. Tsao, et al., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science 334 (2011) 629–634.

    14. [14]

      [14] B. Chen, X. Li, W.J. Wu, Q.Z. Zha, Y.S. Xie, A novel trigeminal zinc porphyrin and corresponding porphyrin monomers for dye-sensitized solar cells, RSC Adv. 4 (2014) 10439–10449.

    15. [15]

      [15] J.X. He, W.J. Wu, J.L. Hua, et al., Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance, J. Mater. Chem. 21 (2011) 6054–6062.

    16. [16]

      [16] Y.S. Yen, C.T. Lee, C.Y. Hsu, et al., Benzotriazole-containing D-π-A conjugated organic dyes for dye-sensitized solar cells, Chem. Asian J. 8 (2013) 809–816.

    17. [17]

      [17] K.R.J. Thomas, Y.C. Hsu, J.T. Lin, et al., 2,3-Disubstituted thiophene-based organic dyes for solar cells, Chem. Mater. 20 (2008) 1830–1840.

    18. [18]

      [18] C.L. Wang, C.M. Lan, S.H. Hong, et al., Enveloping porphyrins for efficient dyesensitized solar cells, Energy Environ. Sci. 5 (2012) 6933–6940.

    19. [19]

      [19] C.F. Lo, S.J. Hsu, C.L. Wang, et al., Tuning spectral and electrochemical properties of porphyrin-sensitized solar cells, J. Phys. Chem. C 114 (2010) 12018–12023.

    20. [20]

      [20] B. Liu, W.Q. Li, B. Wang, et al., Influence of different anchoring groups in indoline dyes for dye-sensitized solar cells: electron injection, impedance and charge recombination, J. Power Sources 234 (2013) 139–146.

    21. [21]

      [21] B. Liu, W.H. Zhu, Y.Q. Wang, et al., Modulation of energy levels by donor groups: an effective approach for optimizing the efficiency of zinc-porphyrin based solar cells, J. Mater. Chem. 22 (2012) 7434–7444.

    22. [22]

      [22] Y.Q. Wang, X. Li, B. Liu, et al., Porphyrins bearing long alkoxyl chains and carbazole for dye-sensitized solar cells: tuning cell performance through an ethynylene bridge, RSC Adv. 3 (2013) 14780–14790.

    23. [23]

      [23] Z.H. Wang, M. Liang, L.N. Wang, et al., New triphenylamine organic dyes containing dithieno[3,2-b:2',3'-d]pyrrole (DTP) units for iodine-free dye-sensitized solar cells, Chem. Commun. 49 (2013) 5748–5750.

    24. [24]

      [24] Y.Q. Wang, L. Xu, X.D. Wei, et al., 2-Diphenylaminothiophene as the donor of porphyrin sensitizers for dye-sensitized solar cells, New J. Chem. 38 (2014) 3227–3235.

    25. [25]

      [25] S. Chang, H.D. Wang, Y. Hua, et al., Conformational engineering of co-sensitizers to retard back charge transfer for high-efficiency dye-sensitized solar cells, J. Mater. Chem. A 1 (2013) 11553–11558.

  • 加载中
    1. [1]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    2. [2]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Gaojie ZhuZhen YangShijun LiWeihua ZhuRui CaoJunlong ZhangJianzhang ZhaoJonathan L. SesslerXunjin ZhuJianxin SongYongshu XieJianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535

    5. [5]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    8. [8]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    9. [9]

      Quan ZhouXiao-Min ChenXujie QinZhe-Ning ChenJun ChenWei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770

    10. [10]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    13. [13]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    14. [14]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    15. [15]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    16. [16]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    17. [17]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    18. [18]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

Metrics
  • PDF Downloads(0)
  • Abstract views(681)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return