Citation:
Bin Chen, Lu Sun, Yong-Shu Xie. Modulation of photovoltaic behavior of dye-sensitized solar cells by electron donors of porphyrin dyes and cosensitization[J]. Chinese Chemical Letters,
;2015, 26(7): 899-904.
doi:
10.1016/j.cclet.2015.04.021
-
Porphyrin dyes have received great attention due to their excellent photovoltaic performance in dyesensitized solar cells (DSSCs). In this work, dyes XC1-XC3 were synthesized by introducing various numbers of bis(4-methoxyphenyl)amino and p-hexyloxyphenyl groups to porphyrin meso-positions. The XC1 molecule contains two p-hexyloxyphenyl groups, and its DSSCs showed the power conversion efficiency of 4.81%. For XC2 and XC3, the replacement of p-hexyloxyphenyl with diphenylamino groups can effectively enhance the light harvesting around 500 nm. However, the highest occupied molecular orbitals (HOMOs) were elevated too much, which suppressed the dye regeneration processes, leading to low cell efficiencies of 2.51% and 1.27% for XC2, and XC3, respectively. To further improve the cell performance, an anthracene derivative C1 was used as the cosensitizer for XC1, which increased both the Jsc and Voc values, with an improved efficiency of 5.75%.
-
Keywords:
- Porphyrins,
- DSSCs,
- Cosensitizer,
- Theoretical calculation
-
-
-
[1]
[1] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737–740.
-
[2]
[2] Z.L. Ku, X. Li, G.H. Liu, et al., Transparent NiS counter electrodes for thiolate/ disulfide mediated dye-sensitized solar cells, J. Mater. Chem. A 1 (2013) 237–240.
-
[3]
[3] Z. Li, Q.Q. Li, Molecular engineering and cosensitization for developing efficient solar cells based on porphyrin dyes with an extended π-framework, Sci. China Chem. 57 (2014) 1491.
-
[4]
[4] J. Zeng, T.L. Zhang, X.F. Zang, et al., D-A-π-A organic sensitizers containing a benzothiazole moiety as an additional acceptor for use in solar cells, Sci. China Chem. 56 (2013) 505–513.
-
[5]
[5] Y.R. Gao, L.L. Chu, W. Guo, T.L. Ma, Synthesis and photoelectric properties of an organic dye containing benzo[1,2-b:4,5-b']dithiophene for dye-sensitized solar cells, Chin. Chem. Lett. 24 (2013) 149–152.
-
[6]
[6] S.Y. Qu, J.L. Hua, H. Tian, New D-π-A dyes for efficient dye-sensitized solar cells, Sci. China Chem. 55 (2012) 677–697.
-
[7]
[7] L.L. Li, E.W.G. Diau, Porphyrin-sensitized solar cells, Chem. Soc. Rev. 42 (2013) 291–304.
-
[8]
[8] C.L. Wang, Y.C. Chang, C.M. Lan, et al., Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells, Energy Environ. Sci. 4 (2011) 1788–1795.
-
[9]
[9] S.L. Wu, H.P. Lu, H.T. Yu, et al., Design and characterization of porphyrin sensitizers with a push-pull framework for highly efficient dye-sensitized solar cells, Energy Environ. Sci. 3 (2010) 949–955.
-
[10]
[10] S. Mathew, A. Yella, P. Gao, et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem. 6 (2014) 242–247.
-
[11]
[11] X. Sun, Y.Q. Wang, X. Li, et al., Cosensitizers for simultaneous filling up of both absorption valleys of porphyrins: a novel approach for developing efficient panchromatic dye-sensitized solar cells, Chem. Commun. 50 (2014) 15609–15612.
-
[12]
[12] Y.Q. Wang, B. Chen, W.J. Wu, et al., Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor: from molecular design to cosensitization, Angew. Chem. Int. Ed. 53 (2014) 10779–10783.
-
[13]
[13] A. Yella, H.W. Lee, H.N. Tsao, et al., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science 334 (2011) 629–634.
-
[14]
[14] B. Chen, X. Li, W.J. Wu, Q.Z. Zha, Y.S. Xie, A novel trigeminal zinc porphyrin and corresponding porphyrin monomers for dye-sensitized solar cells, RSC Adv. 4 (2014) 10439–10449.
-
[15]
[15] J.X. He, W.J. Wu, J.L. Hua, et al., Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance, J. Mater. Chem. 21 (2011) 6054–6062.
-
[16]
[16] Y.S. Yen, C.T. Lee, C.Y. Hsu, et al., Benzotriazole-containing D-π-A conjugated organic dyes for dye-sensitized solar cells, Chem. Asian J. 8 (2013) 809–816.
-
[17]
[17] K.R.J. Thomas, Y.C. Hsu, J.T. Lin, et al., 2,3-Disubstituted thiophene-based organic dyes for solar cells, Chem. Mater. 20 (2008) 1830–1840.
-
[18]
[18] C.L. Wang, C.M. Lan, S.H. Hong, et al., Enveloping porphyrins for efficient dyesensitized solar cells, Energy Environ. Sci. 5 (2012) 6933–6940.
-
[19]
[19] C.F. Lo, S.J. Hsu, C.L. Wang, et al., Tuning spectral and electrochemical properties of porphyrin-sensitized solar cells, J. Phys. Chem. C 114 (2010) 12018–12023.
-
[20]
[20] B. Liu, W.Q. Li, B. Wang, et al., Influence of different anchoring groups in indoline dyes for dye-sensitized solar cells: electron injection, impedance and charge recombination, J. Power Sources 234 (2013) 139–146.
-
[21]
[21] B. Liu, W.H. Zhu, Y.Q. Wang, et al., Modulation of energy levels by donor groups: an effective approach for optimizing the efficiency of zinc-porphyrin based solar cells, J. Mater. Chem. 22 (2012) 7434–7444.
-
[22]
[22] Y.Q. Wang, X. Li, B. Liu, et al., Porphyrins bearing long alkoxyl chains and carbazole for dye-sensitized solar cells: tuning cell performance through an ethynylene bridge, RSC Adv. 3 (2013) 14780–14790.
-
[23]
[23] Z.H. Wang, M. Liang, L.N. Wang, et al., New triphenylamine organic dyes containing dithieno[3,2-b:2',3'-d]pyrrole (DTP) units for iodine-free dye-sensitized solar cells, Chem. Commun. 49 (2013) 5748–5750.
-
[24]
[24] Y.Q. Wang, L. Xu, X.D. Wei, et al., 2-Diphenylaminothiophene as the donor of porphyrin sensitizers for dye-sensitized solar cells, New J. Chem. 38 (2014) 3227–3235.
-
[25]
[25] S. Chang, H.D. Wang, Y. Hua, et al., Conformational engineering of co-sensitizers to retard back charge transfer for high-efficiency dye-sensitized solar cells, J. Mater. Chem. A 1 (2013) 11553–11558.
-
[1]
-
-
-
[1]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[2]
Shaohua Zhang , Xiaojuan Dai , Wei Hao , Liyao Liu , Yingqiao Ma , Ye Zou , Jia Zhu , Chong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837
-
[3]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[4]
Gaojie Zhu , Zhen Yang , Shijun Li , Weihua Zhu , Rui Cao , Junlong Zhang , Jianzhang Zhao , Jonathan L. Sessler , Xunjin Zhu , Jianxin Song , Yongshu Xie , Jianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535
-
[5]
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
-
[6]
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
-
[7]
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
-
[8]
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
-
[9]
Quan Zhou , Xiao-Min Chen , Xujie Qin , Zhe-Ning Chen , Jun Chen , Wei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770
-
[10]
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
-
[11]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[12]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[13]
Hongmei Yu , Baoxi Zhang , Meiju Liu , Cheng Xing , Guorong He , Li Zhang , Ningbo Gong , Yang Lu , Guanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032
-
[14]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[15]
Xiaobo Li , Qunyan Wu , Congzhi Wang , Jianhui Lan , Meng Zhang , Weiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359
-
[16]
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
-
[17]
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
-
[18]
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(683)
- HTML views(18)