Citation:
Peng-Zhong Chen, Hai-Rong Zheng, Li-Ya Niu, Yu-Zhe Chen, Li-Zhu Wu, Chen-Ho Tung, Qing-Zheng Yang. A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY[J]. Chinese Chemical Letters,
;2015, 26(6): 631-635.
doi:
10.1016/j.cclet.2015.04.018
-
The introduction of hydroxy group to the 3-or 5-position of 4,4-difluoro-4-bora-3a,4a-diazaindacene (BODIPY) results in unexpected tautomerization to BDPONa with interesting structural and photophysical properties. The core of BDPONa is an anion with sodium cation as counter-ion. BDPONa displays strong fluorescence in organic solvents.
-
Keywords:
- Bodipy,
- Substitution reaction,
- Tautomerization,
- Sodium salt
-
-
-
[1]
[1] N. Boens, V. Leen, W. Dehaen, Fluorescent indicators based on BODIPY, Chem. Soc. Rev. 41 (2012) 1130-1172.
-
[2]
[2] A. Loudet, K. Burgess, BODIPY dyes and their derivatives: syntheses and spectroscopic properties, Chem. Rev. 107 (2007) 4891-4932.
-
[3]
[3] G. Ulrich, R. Ziessel, A. Harriman, The chemistry of fluorescent Bodipy dyes: versatility unsurpassed, Angew. Chem. Int. Ed. 47 (2008) 1184-1201.
-
[4]
[4] A. Treibs, F.H. Kreuzer, Difluorboryl-Komplexe von di-und tripyrrylmethenen, Justus Liebigs Ann. Chem. 718 (1968) 208-223.
-
[5]
[5] J. Ahrens, B. Böker, K. Brandhorst, M. Funk, M. Bröring, Sulfur-bridged BODIPY DYEmers, Chem. Eur. J. 19 (2013) 11382-11395.
-
[6]
[6] T. Bura, R. Ziessel, Water-soluble phosphonate-substituted BODIPY derivatives with tunable emission channels, Org. Lett. 13 (2011) 3072-3075.
-
[7]
[7] L. Jiao, C. Yu, M. Liu, et al., Synthesis and functionalization of asymmetrical benzofused BODIPY dyes, J. Org. Chem. 75 (2010) 6035-6038.
-
[8]
[8] S. Kolemen, Y. Cakmak, Z. Kostereli, E.U. Akkaya, Atropisomeric dyes: axial chirality in orthogonal BODIPY oligomers, Org. Lett. 16 (2014) 660-663.
-
[9]
[9] V. Leen, D. Miscoria, S. Yin, et al., 1,7-Disubstituted boron dipyrromethene (BODIPY) dyes: synthesis and spectroscopic properties, J. Org. Chem. 76 (2011) 8168-8176.
-
[10]
[10] Z. Li, Y. Chen, X. Lv, W.F. Fu, A tetraphenylethene-decorated BODIPY monomer/dimer with intense fluorescence in various matrices, New J. Chem. 37 (2013) 3755-3761.
-
[11]
[11] P.C. Shi, X.D. Jiang, R.N. Gao, Y.Y. Dou, W.L. Zhao, Synthesis and application of Vis/NIR dialkylaminophenylbuta-1,3-dienyl borondipyrromethene dyes, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.11.010.
-
[12]
[12] O.A. Bozdemir, R. Guliyev, O. Buyukcakir, et al., Selective manipulation of ICT and PET processes in styryl-Bodipy derivatives: applications in molecular logic and fluorescence sensing of metal ions, J. Am. Chem. Soc. 132 (2010) 8029-8036.
-
[13]
[13] J.C.T. Carlson, L.G. Meimetis, S.A. Hilderbrand, R. Weissleder, BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes, Angew. Chem. Int. Ed. 52 (2013) 6917-6920.
-
[14]
[14] M. Işık, R. Guliyev, S. Kolemen, et al., Designing an intracellular fluorescent probe for glutathione: two modulation sites for selective signal transduction, Org. Lett. 16 (2014) 3260-3263.
-
[15]
[15] M. Isik, T. Ozdemir, I.S. Turan, S. Kolemen, E.U. Akkaya, Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BODIPY-based reagents, Org. Lett. 15 (2013) 216-219.
-
[16]
[16] P. Li, L. Fang, H. Zhou, et al., A new ratiometric fluorescent probe for detection of Fe2+ with high sensitivity and its intracellular imaging applications, Chem. Eur. J. 17 (2011) 10520-10523.
-
[17]
[17] X. Lv, Y. Wang, S. Zhang, et al., A specific fluorescent probe for NO based on a new NO-binding group, Chem. Cummun. 50 (2014) 7499-7502.
-
[18]
[18] B.W. Michel, A.R. Lippert, C.J. Chang, A reaction-based fluorescent probe for selective imaging of carbon monoxide in living cells using a palladium-mediated carbonylation, J. Am. Chem. Soc. 134 (2012) 15668-15671.
-
[19]
[19] F. Wang, Z. Guo, X. Li, X. Li, C. Zhao, Development of a small molecule probe capable of discriminating cysteine, homocysteine, and glutathione with three distinct turn-on fluorescent outputs, Chem. Eur. J. 20 (2014) 11471-11478.
-
[20]
[20] H. Zhu, J. Fan, M. Li, et al., A "distorted-BODIPY"-based fluorescent probe for imaging of cellular viscosity in live cells, Chem. Eur. J. 20 (2014) 4691-4696.
-
[21]
[21] H. Zhu, J. Fan, J. Wang, H. Mu, X. Peng, An "enhanced PET"-based fluorescent probe with ultrasensitivity for imaging basal and elesclomol-induced HClO in cancer cells, J. Am. Chem. Soc. 136 (2014) 12820-12823.
-
[22]
[22] B. Brizet, V. Goncalves, C. Bernhard, et al., DMAP-BODIPY alkynes: a convenient tool for labeling biomolecules for bimodal PET-optical imaging, Chem. Eur. J. 20 (2014) 12933-12944.
-
[23]
[23] Y.Z. Chen, P.Z. Chen, H.Q. Peng, et al., Water-soluble, membrane-permeable organic fluorescent nanoparticles with large tunability in emission wavelengths and Stokes shifts, Chem. Cummun. 49 (2013) 5877-5879.
-
[24]
[24] S. Liu, D. Li, Z. Zhang, et al., Efficient synthesis of fluorescent-PET probes based on[18F]BODIPY dye, Chem. Cummun. 50 (2014) 7371-7373.
-
[25]
[25] Y. Ni, L. Zeng, N.Y. Kang, et al., Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications, Chem. Eur. J. 20 (2014) 2301-2310.
-
[26]
[26] X. Peng, J. Du, J. Fan, et al., A selective fluorescent sensor for imaging Cd2+ in living cells, J. Am. Chem. Soc. 129 (2007) 1500-1501.
-
[27]
[27] D. Wang, J. Fan, X. Gao, et al., Carboxyl BODIPY dyes from bicarboxylic anhydrides: one-pot preparation, spectral properties, photostability, and biolabeling, J. Org. Chem. 74 (2009) 7675-7683.
-
[28]
[28] S. Zhang, T. Wu, J. Fan, et al., A BODIPY-based fluorescent dye for mitochondria in living cells, with low cytotoxicity and high photostability, Org. Biomol. Chem. 11 (2013) 555-558.
-
[29]
[29] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.
-
[30]
[30] L. Huang, X. Yu, W. Wu, J. Zhao, Styryl Bodipy-C60 dyads as efficient heavy-atomfree organic triplet photosensitizers, Org. Lett. 14 (2012) 2594-2597.
-
[31]
[31] A. Kamkaew, S.H. Lim, H.B. Lee, et al., BODIPY dyes in photodynamic therapy, Chem. Soc. Rev. 42 (2013) 77-88.
-
[32]
[32] T. Rohand, M. Baruah, W. Qin, N. Boens, W. Dehaen, Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution, Chem. Cummun. (2006) 266-268.
-
[33]
[33] T. Rohand, W. Qin, N. Boens, W. Dehaen, Palladium-catalyzed coupling reactions for the functionalization of BODIPY dyes with fluorescence spanning the visible spectrum, Eur. J. Org. Chem. 2006 (2006) 4658-4663.
-
[34]
[34] L. Feng, H. Li, L.Y. Niu, et al., A fluorometric paper-based sensor array for the discrimination of heavy-metal ions, Talanta 108 (2013) 103-108.
-
[35]
[35] L.Y. Niu, Y.S. Guan, Y.Z. Chen, et al., BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine, J. Am. Chem. Soc. 134 (2012) 18928-18931.
-
[36]
[36] L.Y. Niu, Y.S. Guan, Y.Z. Chen, et al., A turn-on fluorescent sensor for the discrimination of cystein from homocystein and glutathione, Chem. Cummun. 49 (2013) 1294-1296.
-
[37]
[37] L.Y. Niu, H. Li, L. Feng, et al., BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions, Anal. Chim. Acta 775 (2013) 93-99.
-
[38]
[38] Y. Zhang, H. Li, L.Y. Niu, et al., An SPE-assisted BODIPY fluorometric paper sensor for the highly selective and sensitive determination of Cd2+ in complex sample: rice, Analyst 139 (2014) 3146-3153.
-
[39]
[39] D. Kim, K. Yamamoto, K.H. Ahn, A BODIPY-based reactive probe for ratiometric fluorescence sensing of mercury ions, Tetrahedron 68 (2012) 5279-5282.
-
[40]
[40] J. Cao, C. Zhao, P. Feng, Y. Zhang, W. Zhu, A colorimetric and ratiometric NIR fluorescent turn-on fluoride chemodosimeter based on BODIPY derivatives: high selectivity via specific Si-O cleavage, RSC Adv. 2 (2012) 418-420.
-
[41]
[41] C. Zhao, P. Feng, J. Cao, et al., 6-Hydroxyindole-based borondipyrromethene: synthesis and spectroscopic studies, Org. Biomol. Chem. 10 (2012) 267-272.
-
[1]
-
-
-
[1]
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
-
[2]
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
-
[3]
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
-
[4]
Wenjuan Jin , Zelong Chen , Yi Wang , Jiaxuan Li , Jiahui Li , Yuxin Pei , Zhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328
-
[5]
Lulu Cao , Yikun Li , Dongxiang Zhang , Shuai Yue , Rong Shang , Xin-Dong Jiang , Jianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735
-
[6]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[7]
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
-
[8]
Yan Zhu , Jia Liu , Meiheng Lv , Tingting Wang , Dongxiang Zhang , Rong Shang , Xin-Dong Jiang , Jianjun Du , Guiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446
-
[9]
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
-
[10]
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
-
[11]
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212
-
[12]
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
-
[13]
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
-
[14]
Jiao Wang , Shuang-Yan Lang , Zhen-Zhen Shen , Gui-Xian Liu , Jian-Xin Tian , Yuan Li , Rui-Zhi Liu , Rui Wen . In situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815
-
[15]
Hongzhi Zhang , Hong Li , Asif Ali Haider , Junpeng Li , Zhi Xie , Hongming Jiang , Conglin Liu , Rui Wang , Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509
-
[16]
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
-
[17]
Mao-Fan Li , Ming‐Yu Guo , De-Xuan Liu , Xiao-Xian Chen , Wei-Jian Xu , Wei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507
-
[18]
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
-
[19]
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
-
[20]
Hong Chen , Mao-Yin Ran , Long-Hua Li , Xin-Tao Wu , Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(751)
- HTML views(22)