Citation:
Rui Tao, Xue-Jiao Yin, Ke-Hu Wang, Yu-Zhuo Niu, Ya-Lin Wang, Dan-Feng Huang, Ying-Peng Su, Jin-Xian Wang, Yu-Lai Hu, Ying Fu, Zheng-Yin Du. Solvent free synthesis of trifluoromethyl tertiary alcohols by cross Aldol reaction[J]. Chinese Chemical Letters,
;2015, 26(8): 1046-1049.
doi:
10.1016/j.cclet.2015.04.015
-
Exceedingly fast preparation of trifluoromethyl tertiary alcohols has been accomplished from methyl ketones and trifluoromethyl ketones under solvent free conditions by cross Aldol reaction. The reaction was achieved in the presence of common inorganic base by grinding method at ambient temperature to give β-trifluoromethyl-β-hydroxyl ketones in high yields (up to 95%).
-
-
-
[1]
[1] (a) R. Filler, Y. Kobayashi, L.M. Yagupolskii, Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, Elsevier, Amsterdam, 1993; (b) R.E. Banks, B.E. Smart, C.J. Tatlow, Organofluorine Chemistry: Principles and Comercial Applications, Springer, New York, 1994, pp. 237-262; (c) T. Hiyama, Organofluorin Compounds: Chemistry and Application, Springer, Berlin, 2000, pp. 183-234; (d) W.P. Gu, J.H. Lin, J.C. Xiao, Direct N-gem-difluorocyclopropylation of nitroheterocycles by utilizing gem-difluorocyclopropyl tosylate, Chin. Chem. Lett. 25 (2014) 24-28.
-
[2]
[2] (a) K. Mü ller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science 317 (2007) 1881-1886; (b) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Fluorine in medicinal chemistry, Chem. Soc. Rev. 37 (2008) 320-330; (c) W.K. Hagmann, The many roles for fluorine in medicinal chemistry, J. Med. Chem. 51 (2008) 4359-4369.
-
[3]
[3] H. Kawai, S. Okusu, E. Tokunaga, N. Shibata, Enantioselective synthesis of 5-trifluoromethyl-2-isoxazolines and their N-oxides by [hydroxy(tosyloxy)iodo] benzene-mediated oxidative N-O coupling, Eur. J. Org. Chem. 29 (2013) 6506-6509.
-
[4]
[4] P.V. Ramachandran, Asymmetric Fluoroorganic Chemistry: synthesis, Application and Future Directions, ACS, Washington, 1999, pp. 255-269.
-
[5]
[5] (a) J. Ren, J. Milton, K.L. Weaver, S.A. Short, D.I. Stuart, D.K. Stammers, Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase, Structure 8 (2000) 1089-1094; (b) O.S. Pedersen, E.B. Pedersen, The flourishing syntheses of non-nucleoside reverse transcriptase inhibitors, Synthesis 4 (2000) 479-495.
-
[6]
[6] S. Sasaki, K. Kikuchi, T. Yamuchi, K. Higashiyama, Direct Aldol reaction of trifluoromethyl ketones with ketone catalyzed by Et2Zn and secondary amines, Synlett 10 (2011) 1431-1434.
-
[7]
[7] (a) L.H. Qiu, Z.X. Shen, C.Q. Shi, Y.H. Liu, Y.W. Zhang, Proline catalyzed asymmetric Aldol reaction between methyl ketones and 1-aryl-2 2,2-trifluoroethanones, Chin. J. Chem. 23 (2005) 584-588; (b) N. Duangdee, W. Harnying, G. Rulli, et al., Highly enantioselective organocatalytic trifluoromethyl carbinol synthesis -a caveat on reaction times and product isolation, J. Am. Chem. Soc. 134 (2012) 11196-11205; (c) N. Hara, R. Tamura, Y. Funahashi, S. Nakamura, N-(heteroarenesulfonyl) prolinamides-catalyzed Aldol reaction between acetone and aryl trihalomethyl ketones, Org. Lett. 13 (2011) 1662-1665; (d) Y. Zheng, H.Y. Xiong, J. Nie, M.Q. Hua, J.A. Ma, Biomimetic catalytic enantioselective decarboxylative Aldol reaction of β-keto acids with trifluoromethyl ketones, Chem. Commun. 48 (2012) 4308-4310.
-
[8]
[8] (a) M.A.P. Martins, C.P. Frizzo, D.N. Moreira, L. Buriol, P. Machado, Solvent-free heterocyclic synthesis, Chem. Rev. 109 (2009) 4140-4182; (b) G. Choudhary, R. Krishna Peddinti, An expeditious, highly efficient, catalystfree and solvent-free synthesis of nitroamines and nitrosulfides by Michael addition, Green Chem. 13 (2011) 276-282; (c) A. Kumar, S. Sharma, A grinding-induced catalyst-and solvent-free synthesis of highly functionalized 1,4-dihydropyridines via a domino multicomponent reaction, Green Chem. 13 (2011) 2017-2020; (d) D. Wang, J. Li, N. Li, T. Gao, S. Hou, B. Chen, An efficient approach to homocoupling of terminal alkynes: solvent-free synthesis of 1,3-diynes using catalytic Cu (II) and base, Green Chem. 12 (2010) 45-48; (e) B.R. Vaddula, R.S. Varma, J. Leazer, Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines, Tetrahedron Lett. 54 (2013) 1538-1541; (f) J. Yang, N. Li, S. Li, W. Wang, L. Li, A. Wang, X. Wang, Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions, Green Chem. 16 (2014) 4879-4884; (g) S. Yan, Y. Chen, L. Liu, N. He, J. Lin, Three-component solvent-free synthesis of highly substituted bicyclic pyridines containing a ring-junction nitrogen, Green Chem. 12 (2010) 2043-2052; (h) Y.H. Ma, G. Wu, N. Jiang, et al., Microwave-assisted, facile, rapid and solventfree one pot two-component synthesis of some special acylals, Chin. Chem. Lett. 26 (2015) 81-84.
-
[9]
[9] (a) H.W. Zhan, J.X. Wang, X.T. Wang, Solvent-and catalyst-free synthesis of dihydropyrimidinthiones in one-pot under focused microwave irradiation conditions, Chin. Chem. Lett. 19 (2008) 1183-1185; (b) X.Q. Men, T.J. Meng, J.X. Wang, L. Xin, Pd(II) catalyzed addition reaction of benzylzinc bromides or allylzinc iodines with aromatic aldehydes, Chin. J. Org. Chem. 27 (2007) 272-275; (c) J.X. Wang, N. An, Solvent-free synthesis of 1 4-bis(3-aryl-3-oxo-3-propenyl)-benzenes under grind condition, J. Northw. Norm. Univ. (Nat. Sci.) 47 (2011) 59-62.
-
[10]
[10] J. Xu, Y. Hu, D. Huang, et al., Thiourea-catalyzed enantioselective fluorination ofbketo esters, Adv. Synth. Catal. 354 (2012) 515-526.
-
[11]
[11] V.Y. Sosnovskikh, I.S. Ovsyannikov, I.A. Aleksandrova, Ketone-ketone condensation with the participation of polyhaloalkyl phenyl ketones, Zh. Org. Khim. 28 (1992) 518-526.
-
[12]
[12] J. Nie, H.C. Guo, D. Cahard, J.A. Ma, Asymmetric construction of stereogenic carbon centers featuring a trifluoromethyl group from prochiral trifluoromethylated substrates, Chem. Rev. 111 (2011) 455-529.
-
[13]
[13] (a) G. Rothenberg, A.P. Downie, C.L. Raston, J.L. Scott, Understanding solid/solid organic reactions, J. Am. Chem. Soc. 123 (2001) 8701-8708; (b) T. Friščić , W. Jones, Recent advances in understanding the mechanism of cocrystal formation via grinding, Cryst. Growth Des. 9 (2009) 1621-1637; (c) P.R. Patil, K.P.R. Kartha, Application of ball milling technology to carbohydrate reactions: I. Regioselective primary hydroxyl protection of hexosides and nucleoside by planetary ball milling, J. Carbohydr. Chem. 27 (2008) 279-293.
-
[1]
-
-
-
[1]
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
-
[2]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
-
[3]
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
-
[4]
Jindong Hao , Yufen Lv , Shuyue Tian , Chao Ma , Wenxiu Cui , Huilan Yue , Wei Wei , Dong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513
-
[5]
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
-
[6]
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
-
[7]
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
-
[8]
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
-
[9]
Jun Zhang , Zhiyao Zheng , Can Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160
-
[10]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[11]
Shicheng Dong , Jun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214
-
[12]
Kai An , Qinglong Qiao , Lovelesh , Syed Ali Abbas Abedi , Xiaogang Liu , Zhaochao Xu . "Superimposed" spectral characteristics of fluorophores arising from cross-conjugation hybridization. Chinese Chemical Letters, 2025, 36(1): 109786-. doi: 10.1016/j.cclet.2024.109786
-
[13]
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
-
[14]
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
-
[15]
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
-
[16]
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
-
[17]
Lei Shen , Hongmei Liu , Ming Jin , Jinchao Zhang , Caixia Yin , Shuxiang Wang , Yutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572
-
[18]
Yuexiang Liu , Xiangqiao Yang , Tong Lin , Guantian Yang , Xiaoyong Xu , Bubing Zeng , Zhong Li , Weiping Zhu , Xuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747
-
[19]
Han Yuan , Fengcai Zhang , Hongzhe Huang , Jiafei Wu , Yi Yang , Wanyi Huang , Dongjing Yang , Zhuoming Li , Zhe Li , Ling Huang , Yi-You Huang , Hai-Bin Luo , Lei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965
-
[20]
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(735)
- HTML views(3)