Citation: Chong-Qing Wang, Xin Chen, Jun-Hang Jiang, Hui Tang, Kong-Kai Zhu, You-Jun Zhou, Can-Hui Zheng, Ju Zhu. Acidic rearrangement of benzyl group in flavone benzyl ethers and its regioselectivity[J]. Chinese Chemical Letters, ;2015, 26(6): 793-796. doi: 10.1016/j.cclet.2015.03.035 shu

Acidic rearrangement of benzyl group in flavone benzyl ethers and its regioselectivity

  • Corresponding author: You-Jun Zhou,  Can-Hui Zheng,  Ju Zhu, 
  • Received Date: 21 January 2015
    Available Online: 4 March 2015

    Fund Project: "Chen Guang" project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (12CG42). (No. 09ZR1438800)

  • The benzyl-substituted flavone compounds are rare in nature, while some of which have interesting biological activities. The total synthesis of benzyl-substituted flavone derivatives via the acidic rearrangement of benzyl groups in flavone benzyl ethers, and the complicated regioselectivity of the rearrangement were reported. The regioselectivity was proposed to be determined by the steric hindrance as well as the ease of electrophilic substitution reaction for benzyl cations at different positions of corresponding debenzylated flavone compounds.
  • 加载中
    1. [1]

      [1] M. Singh, M. Kaur, O. Silakari, Flavones: an important scaffold for medicinal chemistry, Eur. J. Med. Chem. 84 (2014) 206–239.

    2. [2]

      [2] S. Kumar, A.K. Pandey, Chemistry and biological activities of flavonoids: an overview, ScientificWorldJournal 2013 (2013) 162750.

    3. [3]

      [3] B. Romano, E. Pagano, V. Montanaro, et al., Novel insights into the pharmacology of flavonoids, Phytother. Res. 27 (2013) 1588–1596.

    4. [4]

      [4] G. Brahmachari, D. Gorai, Progress in the research on naturally occurring flavones and flavonols: an overview, Curr. Org. Chem. 10 (2006) 873–898.

    5. [5]

      [5] M.C. Li, Z. Yao, Y. Takaishi, et al., Isolation of novel phenolic compounds with multidrug resistance (MDR) reversal properties from Onychium japonicum, Chem. Biodivers. 8 (2011) 1112–1120.

    6. [6]

      [6] J. Miao, J. Zhang, S.M. Deng, et al., Isolation and identification of chemical constituents from Citrullus colocynthis, Chin. Tradit. Herb. Drugs 43 (2012) 432–435.

    7. [7]

      [7] G.T. Maatooq, S.H. El-Sharkawy, M. Afifi, et al., C-p-hydroxybenzoylglycoflavones from Citrullus colocynthis, Phytochemistry 44 (1997) 187–190.

    8. [8]

      [8] R. Merghem, M. Jay, M.-R. Viricel, et al., Five 8-C-benzylated flavonoids from Thymus hirtus (Labiateae), Phytochemistry 38 (1995) 637–640.

    9. [9]

      [9] C.H. Zheng, M. Zhang, H. Chen, et al., Luteolin from Flos chrysanthemi and its derivatives: new small molecule Bcl-2 protein inhibitors, Bioorg. Med. Chem. Lett. 24 (2014) 4672–4677.

    10. [10]

      [10] T. Petchmanee, P. Ploypradith, S. Ruchirawat, Solid-supported acids for debenzylation of aryl benzyl ethers, J. Org. Chem. 71 (2006) 2892–2895.

    11. [11]

      [11] B.W. Erickson, R. Merrifield, Acid stability of several benzylic protecting groups used in solid-phase peptide synthesis. Rearrangement of O-benzyltyrosine to 3- benzyltyrosine, J. Am. Chem. Soc. 95 (1973) 3750–3756.

    12. [12]

      [12] G. Sagrera, G. Seoane, Acidic rearrangement of (benzyloxy) chalcones: a short synthesis of chamanetin, Synthesis 2009 (2009) 4190–4202.

    13. [13]

      [13] E.A. Wallén, K. Dahlén, M. Grøtli, et al., Synthesis of 3-aminomethyl-2-aryl-8- bromo-6-chlorochromones, Org. Lett. 9 (2007) 389–391.

    14. [14]

      [14] K. Dahlén, E.A. Wallén, M. Grøtli, et al., Synthesis of 2,3,6,8-tetrasubstituted chromone scaffolds, J. Org. Chem. 71 (2006) 6863–6871.

    15. [15]

      [15] J. Nilsson, E.ù. Nielsen, T. Liljefors, et al., Azaflavones compared to flavones as ligands to the benzodiazepine binding site of brain GABAA receptors, Bioorg. Med. Chem. Lett. 18 (2008) 5713–5716.

    16. [16]

      [16] A.C. Jain, O.D. Tyagi, S.P. Gupta, et al., Aromatic benzylation. Part IV. Synthesis of nuclear benzylated isoflavones and flavones, Indian J. Chem. B 25B (1986) 166–168.

    17. [17]

      [17] A.K. Verma, R. Pratap, Chemistry of biologically important flavones, Tetrahedron 68 (2012) 8523–8538.

    18. [18]

      [18] M.H. Bhure, C.V. Rode, R.C. Chikate, et al., Phosphotungstic acid as an efficient solid catalyst for intramolecular rearrangement of benzyl phenyl ether to 2-benzyl phenol, Catal. Commun. 8 (2007) 139–144.

    19. [19]

      [19] L.S. Hart, C.R. Waddington, Aromatic rearrangements in the benzene series. Part 4. Intramolecularity ofboththe ortho-andpara-rearrangements ofbenzylphenyl ether as shown by labelling experiments, J. Chem. Soc. Perkin Trans. 2 (1985) 1607–1612.

    20. [20]

      [20] K. Pitchumani, S. Devanathan, V. Ramamurthy, Modification of photochemical reactivity on formation of inclusion complexes: photorearrangement of benzyl phenyl ethers and methyl phenoxyacetates, J. Photochem. Photobiol. A 69 (1992) 201–208.

    21. [21]

      [21] A. Detsi, M. Majdalani, C.A. Kontogiorgis, D. Hadjipavlou-Litina, P. Kefalas, Natural and synthetic 20-hydroxy-chalcones and aurones: synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity, Bioorg. Med. Chem. 17 (2009) 8073–8085.

    22. [22]

      [22] N. Jun, G. Hong, K. Jun, Synthesis and evaluation of 20,4',6'-trihydroxychalcones as a new class of tyrosinase inhibitors, Bioorg. Med. Chem. 15 (2007) 2396–2402.

    23. [23]

      [23] K. Fukui, Recognition of stereochemical paths by orbital interaction, Acc. Chem. Res. 4 (1971) 57–64.

    24. [24]

      [24] R. Fu, T. Liu, F.W. Chen, Comparing methods for predicting the reactive site of electrophilic substitution, Acta Phys. Chim. Sin. 30 (2014) 628–639.

    25. [25]

      [25] T. Liu, F.W. Chen, Calculation of molecular orbital composition, Acta Chim. Sinica 69 (2011) 2393–2406.

    26. [26]

      [26] T. Liu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580–592.

    27. [27]

      [27] Gaussian09, Gaussian, Inc.: Wallingford, CT (2009).

  • 加载中
    1. [1]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    2. [2]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    3. [3]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    4. [4]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    8. [8]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    9. [9]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    10. [10]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    13. [13]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    14. [14]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    15. [15]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    16. [16]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    17. [17]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    20. [20]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

Metrics
  • PDF Downloads(0)
  • Abstract views(728)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return