Citation:
Sirigireddy Sudharsan Reddy, Bhoomireddy Rajendra Prasad Reddy, Peddiahgari Vasu Govardhana Reddy. Propylphosphonic anhydride (T3P®) catalyzed one-pot synthesis of α-aminonitriles[J]. Chinese Chemical Letters,
;2015, 26(6): 739-743.
doi:
10.1016/j.cclet.2015.03.021
-
The Strecker reaction was performed via a one-pot three component condensation of hetero aromatic/aromatic aldehydes, secondary amines and trimetylsilyl cyanide in the presence of propylphosphonic anhydride (T3P®) to accomplish the corresponding α-aminonitriles. The main advantages of this method are very short reaction time and excellent yields.
-
-
-
[1]
[1] Y.M. Shafran, V.A. Bakulev, V.S. Mokrushin, Synthesis and properties of a-aminonitriles, Russ. Chem. Rev. 58 (1989) 148–162.
-
[2]
[2] D.A. Martier, W.L. Owens, D. Comer, et al., Antihypertensive agents. Synthesis and biological properties of 2-amino-4-aryl-2-imidazolines, J. Med. Chem. 16 (1973)901–908.
-
[3]
[3] R.O. Duthaler, Recent developments in the stereoselective synthesis of a-aminonitriles, Tetrahedron 50 (1994) 1539–1650.
-
[4]
[4] N. Baskar, C. Fortenberry, A.R. Bunce, Synthesis of aminonitriles under mild catalytic, metal-free conditions, Tetrahedron Lett. 55 (2014) 379-381.
-
[5]
[5] A. Sengupta, C. Su, C. Bao, C.T. Tai, K.P. Loh, Graphene oxide and its functionalized derivatives as carbocatalysts in the multicomponent Strecker reaction ketones, ChemCatChem 6 (2014) 2507-2511.
-
[6]
[6] Y. Wen, Y. Xiong, L. Chang, et al., Chiral bisformamides as effective organocatalysts for the asymmetric one pot three component Strecker reaction, J. Org. Chem. 72 (2007) 7715-7719.
-
[7]
[7] J. Huang, X. Liu, Y. Wen, B. Qin, X. Feng, Enantioselective Strecker reaction of phosphinoyl ketoimines catalyzed by in situ prepared chiral N,N'-dioxides, J. Org. Chem. 72 (2007) 204-208.
-
[8]
[8] S.C. Pan, B. List, Catalytic asymmetric three component acyl-Strecker reaction, Org. Lett. 9 (2007) 1149-1151.
-
[9]
[9] M. Negru, D. Schollmeyer, H. Kunz, Enantioselective Strecker reaction catalyzed by an organocatalyst lacking a hydrogen-bond donar function, Angew. Chem. Int. Ed. Engl. 46 (2007) 9339-9341.
-
[10]
[10] G.K.S. Prakash, T. Mathew, C. Panja, et al., Gallium (III) triflate catalyzed efficient Strecker reaction of ketones and their fluorinated analogs, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 3703-3706.
-
[11]
[11] M.Z. Kassaee, H. Masrouri, F. Movahedi, Sulfamic acid functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one pot synthesis of α-aminonitriles in water, Appl. Catal. A: Gen. 395 (2011) 28-33.
-
[12]
[12] M.N. Sefat, D. Saberi, K. Niknam, Preparation of silica-based ionic liquid an efficient and recyclable catalyst for one pot synthesis of α-aminonitriles, Catal. Lett. 141 (2011) 1713-1720.
-
[13]
[13] T. Rahi, M. Bagherrnejad, K. Niknam, Synthesis of α-aminonitriles using silica bonded N-propylpiperazine sulfamic acid as a recyclable catalyst, Chin. Chem. Lett. 23 (2012) 1103-1106.
-
[14]
[14] A.R. Hajipour, I.M. Dehbane, An efficient one pot synthesis of α-aminonitriles using ecofriendly Lewis acidic ionic liquid cholin chloride 2ZnCl2, Iran. J. Catal. 2 (2012) 147-151.
-
[15]
[15] S. Ghasemi, M. Bagherrnejad, K. Niknam, Sulfuric acid {[3-(3silicapropyl)sulfanyl] propyl} ester as a recyclable solid acid catalyst for the synthesis of a-amino nitries, Iran. J. Catal. 3 (2013) 165-169.
-
[16]
[16] R. Warmuth, T.E. Munsch, R.A. Stalker, B. Li, A. Beatty, Enantioselective synthesis of benzocyclic a, a-dialkyl-amino acids: new insight into the solvent dependent stereoselectivity of the TMSCN addition to phenylglycinol derived imines, Tetrahedron 57 (2001) 6383-6397.
-
[17]
[17] D. Enders, J.P. Shilvock, Some recent applications of a-aminonitrile chemistry, Chem. Soc. Rev. 29 (2000) 359-373.
-
[18]
[18] S. Kobayashi, H. Ishitani, Catalytic enantioselective addition to imines, Chem. Rev. 99 (1999) 1069-1094.
-
[19]
[19] B.A. Bhanu Prasad, A. Bisal, V.K. Singh, Trimethylsilyl cyanide addition to aldimines and its application in the synthesis of (S)-phenylglycine methyl ester, Tetrahedron Lett. 45 (2004) 9565-9567.
-
[20]
[20] S. Harusawa, Y. Hmada, T. Shiori, Diethyl phosphorocyanidated (DEPC). A novel reagent for the classical Strecker's a-aminonitrile synthesis, Tetrahedron Lett. 20 (1979) 4663-4666.
-
[21]
[21] S. Nakamura, N. Sato, M. Sugimoto, T. Toru, A new approach to enantioselective cyanation of imines with Et3AlCN, Tetrahedron Asymmetry 15 (2004) 1513-1516.
-
[22]
[22] P. Vachal, E.N. Jacobsen, Structure-based analysis and optimization of a highly enantioselective catalyst for the Strecker reaction, J. Am. Soc. 124 (2002) 10012-10014.
-
[23]
[23] A. Baeza, C. Najera, J.M. Sansano, Solvent-free synthesis of racemic α-aminonitriles, Synthesis (2007) 1230-1234.
-
[24]
[24] B.C. Ranu, S.S. Dey, A. Hajra, Indim trichloride catalyzed one-step synthesis of aaminonitriles by a three-component condensation of carbonyl compounds, amines and potassium cyanide, Tetrahedron 58 (2002) 2529-2532.
-
[25]
[25] S.K. De, R.A. Gibbs, Bismuth trichloride catalyzed synthesis of α-aminonitriles, Tetrahedron Lett. 45 (2004) 7407-7408.
-
[26]
[26] J.S. Yadav, B.V.S. Reddy, B. Eeshwaraiah, M. Srinivas, Montmorillonite KSF clay catalyzed one-pot synthesis of α-aminonitriles, Tetrahedron 60 (2004) 1767-1771.
-
[27]
[27] B. Karimi, A.A. Safari, One-pot synthesis of α-aminonitriles using a highly efficient and recyclable silica-based scandium (III) interphase catalyst, J. Organomet. Chem. 693 (2008) 2967-2970.
-
[28]
[28] B.M. Reddy, B. Thirupathi, M.K.K. Patil, Highly efficient promoted zirconia solid acid catalysts of α-aminonitriles using trimethylsilyl cyanide, J. Mol. Catal. A: Chem. 307 (2009) 154-159.
-
[29]
[29] H.A. Oskooie, M.M. Heravi, A. Sadnia, F. Jannati, F.K. Behbahabi, Ferric perchloratecatalyzed one-pot synthesis of α-aminonitriles using trimethylsilylcyanide, Synth. Commun. 37 (2007) 2543-2548.
-
[30]
[30] N.H. Khan, S. Agrawal, R.I. Kureshy, et al., Fe(Cp)2PF6 catalyzed efficient Strecker reactions of ketones and aldehydes under solvent-free conditions, Tetrahedron Lett. 49 (2008) 640-644.
-
[31]
[31] Z.L. Shen, S.J. Ji, T.P. Loh, Indium(III) iodide-mediated Strecker reaction in water: an efficient and environmentally friendly approach for the synthesis of α-aminonitriles via a three-component condensation, Tetrahedron 64 (2008) 8159-8163.
-
[32]
[32] S.H. Wang, L.F. zhao, Z.M. Du, iodide catalyzed three-component Strecker-type synthesis of α-aminonitriles from aldehydes, amines and tributyltin cyanide, Chin. J. Chem. 24 (2006) 135-137.
-
[33]
[33] E. Rafiee, A. Azad, K5CoW12O40·3H2O: heterogeneous catalyst for the Streckertype aminative cyanation of aldehydes and ketones, Synth. Commun. 37 (2007) 1127-1132.
-
[34]
[34] S.K. De, Vanadyl triflate as an efficient and recyclable catalyst for the synthesis of α-aminonitriles, Synth. Commun. 35 (2005) 1577-1582.
-
[35]
[35] M.M. Mojtahedi, S. Abaee, T. Alishiri, Superparamagnetic iron oxide as an efficient catalyst for the one-pot, solvent-free synthesis of α-aminonitriles, Tetrahedron Lett. 50 (2009) 2322-2325.
-
[36]
[36] A. Heyderi, A. Arefi, S. Khaksar, R.K. Shiroodi, Guanidine hydrochloride: an active and simple catalyst for Strecker type reaction, J. Mol. Catal. A: Chem. 271 (2007) 142-144.
-
[37]
[37] A. Shaabani, A. Maleki, M.R. Soudi, H. Mofakham, Xanthan sulfuric acid: a new and efficient bio-supported solid acid catalyst for the synthesis of α-aminonitriles by condensation of carbonyl compounds, amines and trimethylsilylcyanide, Catal. Commun. 10 (2009) 945-949.
-
[38]
[38] J.S. Yadav, B.V.S. Reddy, B. Eeshwaraiah, M. Srinivas, P. Vishnumuythy, Threecomponent coupling reactions in: a facile synthesis of α-aminonitriles, New J. Chem. 27 (2003) 462-465.
-
[39]
[39] W.Y. Chen, J. Lu, Silica sulfuric acid catalyzed one-pot synthesis of α-aminonitriles, Synlett (2005) 2293-2296.
-
[40]
[40] B. Karimi, D. Zareyee, Solvent-free three component Strecker reaction of ketones using highly recyclable and hydrophobic sulfonic acid based nanoreactors, J. Mater. Chem. 19 (2009) 8665-8670.
-
[41]
[41] K. Niknam, D. Saberi, M. Nouri Sefat, Silica-bonded S-sulfonic acid: an efficient and recyclable solid acid catalyst for the three-component synthesis of α-aminonitriles, Tetrahedron Lett. 51 (2010) 2959-2962.
-
[42]
[42] M. Desroses, M. Scobie, T. Helleday, A new concise synthesis of 2,3-dihydroquinazolin-4 (1H)-one derivatives, ChemInform 37 (2013) 3595-3597.
-
[43]
[43] T.H. Ngo, H. Berndt, D. Lentz, H.U. Reissig, Linear and cyclic amides with a thiophene backbone: ultrasound-promoted synthesis and crystal structures, J. Org. Chem. 77 (2012) 9676-9683.
-
[44]
[44] M. Milen, P.A. Balogh, A. Dancso, et al., T3P®-promoted Kabachnik-Fields reaction: an efficient synthesis of a-aminophosphates, ChemCatChem 54 (2013) 5430-5433.
-
[1]
-
-
-
[1]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[2]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[3]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[4]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[5]
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
-
[6]
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
-
[7]
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
-
[8]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[9]
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
-
[10]
Yu-Hang Miao , Zheng-Xu Zhang , Xu-Yi Huang , Yuan-Zhao Hua , Shi-Kun Jia , Xiao Xiao , Min-Can Wang , Li-Ping Xu , Guang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830
-
[11]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[12]
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
-
[13]
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
-
[14]
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
-
[15]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[16]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[17]
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
-
[18]
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
-
[19]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[20]
Lizhang Chen , Yu Fang , Mingxin Pang , Ruoxu Sun , Lin Xu , Qixing Zhou , Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(759)
- HTML views(7)