Citation: Qiao Xu, Yi-Feng Zhu, Zhao Yuan, Hua-Dong Tang. Atom transfer radical polymerization of methyl acrylate, methyl methacrylate and styrene in the presence of trolamine as a highly effective promoter[J]. Chinese Chemical Letters, ;2015, 26(6): 773-778. doi: 10.1016/j.cclet.2015.03.012 shu

Atom transfer radical polymerization of methyl acrylate, methyl methacrylate and styrene in the presence of trolamine as a highly effective promoter

  • Corresponding author: Hua-Dong Tang, 
  • Received Date: 31 December 2014
    Available Online: 27 February 2015

  • Transition metal-mediated atom transfer radical polymerization (ATRP) is a "living"/controlled radical polymerization. Recently, there has been widely increasing interest in reducing the high costs of catalyst separation and post-polymerization purification in ATRP. In this work, trolamine was found to significantly enhance the catalytical performance of CuBr/N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (CuBr/TPEN) and CuBr/tris[2-(dimethylamino) ethylamine] (CuBr/Me6TREN). With the addition of 25-fold molar amount of trolamine relative to CuBr, the catalyst loadings of CuBr/TPEN and CuBr/Me6TREN were dramatically reduced from a catalyst-to-initiator ratio of 1 to 0.01 and 0.05, respectively. The polymerizations of methyl acrylate, methyl methacrylate and styrene still showed first-order kinetics in the presence of trolamine and produced poly(methyl acrylate), poly(methyl methacrylate) and polystyrene with molecular weights close to theoretical values and low polydispersities. These results indicate that trolamine is a highly effective and versatile promoter for ATRP and is promising for potential industrial application.
  • 加载中
    1. [1]

      [1] M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium( II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization,Macromolecules 28 (1995) 1721-1723.

    2. [2]

      [2] J.S. Wang, K. Matyjaszewski, Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc. 117 (1995) 5614-5615.

    3. [3]

      [3] Y. Shi, Z.F. Fu, Y.D. Zhang, S.K. Jiao, Synthesis of comb like poly(methyl methacrylate) by atom transfer radical polymerization with poly(ethyl 2-bromoacrylate) as macroinitiator, Chin. Chem. Lett. 14 (2003) 1289-1292.

    4. [4]

      [4] Y. Yi, X.H. Wan, X.H. Fan, R. Dong, Q.F. Zhou, Synthesis of a novel hybrid liquidcrystalline rod-coil diblock copolymer, J. Polym. Sci. Polym. Chem. 41 (2003) 1799-1806.

    5. [5]

      [5] X.D. Tang, L.C. Gao, X.H. Fan, Q.F. Zhou, Effect of spacer length on the liquid crystalline property of azobenzene-containing ABA-type triblock copolymers via ATRP, Chin. Chem. Lett. 18 (2007) 1129-1132.

    6. [6]

      [6] X.D. Tang, L.C. Gao, X.H. Fan, Q.F. Zhou, Synthesis and characterization of H-type amphiphilic liquid crystalline block copolymers by ATRP, Chin. Chem. Lett. 19 (2008) 237-240.

    7. [7]

      [7] K. Matyjaszewski, M.J. Ziegler, S.V. Arehart, D. Greszta, T. Pakula, Gradient copolymers by atom transfer radical copolymerization, J. Phys. Org. Chem. 13 (2000) 775-786.

    8. [8]

      [8] Y.J. Xu, C.Y. Pan, Block and star-block copolymers by mechanism transformation. 3. S-(PTHF-PSt)4 and S-(PTHF-PSt-PMMA)4 from living CROP to ATRP, Macromolecules 33 (2000) 4750-4756.

    9. [9]

      [9] X.D. Tang, X.H. Fan, X.F. Chen, Q.F. Zhou, Progress of atom transfer radical polymerization (ATRP) applied to the synthesis of star polymers, Prog. Chem. 17 (2005) 1089-1095 (in Chinese).

    10. [10]

      [10] S.G. Gaynor, S. Edelman, K. Matyjaszewski, Synthesis of branched and hyperbranched polystyrenes, Macromolecules 29 (1996) 1079-1081.

    11. [11]

      [11] M.R. Leduc, C.J. Hawker, J. Dao, J.M.J. Fréchet, Dendritic initiators for "living" radical polymerizations: a versatile approach to the synthesis of dendritic-linear block copolymers, J. Am. Chem. Soc. 118 (1996) 11111-11118.

    12. [12]

      [12] Y.L. Zhao, C.F. Chen, F. Xi, Synthesis of well-defined dendritic-linear diblock and triblock copolymers by controlled free radical polymerization, Chin. Chem. Lett. 13 (2002) 217-218.

    13. [13]

      [13] C.H. Hu, A.Q. Zhang, Atom transfer radical polymerization of methyl methacrylate initiated by p-chloromethylstyrene copolymers, Fine Chem. 23 (2006) 298-301 (in Chinese).

    14. [14]

      [14] F. Simal, A. Demonceau, A.F. Noels, Highly efficient ruthenium-based catalytic systems for the controlled free-radical polymerization of vinyl monomers, Angew. Chem. Int. Ed. 38 (1999) 538-540.

    15. [15]

      [15] K. Matyjaszewski, S. Coca, C.B. Jasieczek, Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of glycidyl acrylate, Macromol. Chem. Phys. 198 (1997) 4011-4017.

    16. [16]

      [16] K. Matyjaszewski, S.M. Jo, H.J. Paik, D.A. Shipp, An Investigation into the CuX/2, 2'-Bipyridine (X = Br or Cl) mediated atom transfer radical polymerization of acrylonitrile, Macromolecules 32 (1999) 6431-6438.

    17. [17]

      [17] X.D. Tang, X.C. Liang, N.F. Han, Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) synthesized by ATRP, Chin. Chem. Lett. 20 (2009) 1353-1356.

    18. [18]

      [18] K. Matyjaszewski, T. Pintauer, S. Gaynor, Removal of copper-based catalyst in atom transfer radical polymerization using ion exchange resins, Macromolecules 33 (2000) 1476-1478.

    19. [19]

      [19] Y.Q. Shen, H.D. Tang, S.J. Ding, Catalyst separation in atom transfer radical polymerization, Prog. Polym. Sci. 29 (2004) 1053-1078.

    20. [20]

      [20] J.H. Xia, T. Johnson, S.G. Gaynor, K. Matyjaszewski, J. De Simone, Atom transfer radical polymerization in supercritical carbon dioxide, Macromolecules 32 (1999) 4802-4805.

    21. [21]

      [21] J.V. Nguyen, C.W. Jones, Design, behavior, and recycling of silica-supported CuBrbipyridine ATRP catalysts, Macromolecules 37 (2004) 1190-1203.

    22. [22]

      [22] W. Jakubowski, K. Min, K. Matyjaszewski, Activators regenerated by electron transfer for atom transfer radical polymerization of styrene, Macromolecules 39 (2006) 39-45.

    23. [23]

      [23] K. Matyjaszewski, W. Jakubowski, K. Min, et al., Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 15309-15314.

    24. [24]

      [24] D.M. Haddleton, A.M. Heming, D. Kukulj, D.J. Duncalf, A.J. Shooter, Atom transfer polymerization of methyl methacrylate. Effect of acids and effect with 2-bromo-2-methylpropionic acid initiation, Macromolecules 31 (1998) 2016-2018.

    25. [25]

      [25] K.Matyjaszewski, S. Coca, S.G. Gaynor,M.L.Wei, B.E.Woodworth, Zerovalentmetals in controlled/"living" radical polymerization,Macromolecules 30 (1997) 7348-7350.

    26. [26]

      [26] K. Min, H.F. Gao, K. Matyjaszewski, Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET), J. Am. Chem. Soc. 127 (2005) 3825-3830.

    27. [27]

      [27] K. Min, W. Jakubowski, K. Matyjaszewski, AGET ATRP in the presence of air in miniemulsion and in bulk, Macromol. Rapid Commun. 27 (2006) 594-598.

    28. [28]

      [28] Y.X. Wang, X.L. Li, F.F. Du, et al., Use of alcohols as reducing agents for synthesis of well-defined polymers by AGET-ATRP, Chem. Commun. 48 (2012) 2800-2802.

    29. [29]

      [29] Y.T. Luo, J.M. Zhuang, X.R. Lin, et al., Study of rate-accelerating of aluminum hydroxide, boric acid, and (2-methylpropyl) boronic acid for atom transfer radical polymerization of styrene, J. Xiamen Univ. 47 (2008) 63-66 (in Chinese).

    30. [30]

      [30] H. Zhang, D.M. Xu, K.D. Zhang, Effect of inhibitors on atom transfer radical polymerization of MMA, Chin. J. Chem. 23 (2005) 913-917.

    31. [31]

      [31] H.D. Tang, Y.Q. Shen, B.G. Li, M. Radosz, Tertiary amine-enhanced activity of ATRP catalysts CuBr/TPMA and CuBr/Me6TREN, Macromol. Rapid Commun. 29 (2008) 1834-1838.

    32. [32]

      [32] H.D. Tang, N. Arulsamy, M. Radosz, et al., Highly active copper-based catalyst for atom transfer radical polymerization, J. Am. Chem. Soc. 128 (2006) 16277-16285.

    33. [33]

      [33] H.D. Tang, M. Radosz, Y.Q. Shen, CuBr2/N,N,N',N'-tetra-[(2-pyridal)methyl] ethylenediamine/tertiary amine as a highly active and versatile catalyst for atomtransfer radical polymerization via activator generated by electron transfer, Macromol. Rapid Commun. 27 (2006) 1127-1131.

    34. [34]

      [34] J. Queffelec, S.G. Gaynor, K. Matyjaszewski, Optimization of atom transfer radical polymerization using Cu(I)/tris(2-(dimethylamino)ethyl)amine as a catalyst, Macromolecules 33 (2000) 8629-8639.

    35. [35]

      [35] X. Huang, M.J. Wirth, Surface initiation of living radical polymerization for growth of tethered chains of low polydispersity, Macromolecules 32 (1999) 1694-1696.

    36. [36]

      [36] J.H. Xia, S.G. Gaynor, K. Matyjaszewski, Controlled/"living" radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature, Macromolecules 31 (1998) 5958-5959.

    37. [37]

      [37] J.F. Weiss, G. Tollin, J.T. Yoke, Reactions of triethylamine with copper halides. II. Internal oxidation-reduction of dichlorobis(triethylamine)copper(II), Inorg. Chem. 3 (1964) 1344-1348.

    38. [38]

      [38] M.T. Caudle, V.L. Pecoraro, Mechanism for the reduction of the mixed-valent MnIIIMnIV[2-OHsalpn]2+ complex by tertiary amines, Inorg. Chem. 39 (2000) 5831-5837.

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    3. [3]

      Shuangyu WuJian PengYue JiangSijie Lin . The overlooked promotional effects of alcohols to BiOBr catalysts in photocatalytic degradation of organic pollutants. Chinese Chemical Letters, 2025, 36(11): 110819-. doi: 10.1016/j.cclet.2025.110819

    4. [4]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    5. [5]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    6. [6]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    7. [7]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    8. [8]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    9. [9]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    10. [10]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    11. [11]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    12. [12]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    13. [13]

      Haijiang GongQingtan ZengShili GaiYaqian DuJing ZhangQingyu WangHe DingLichun WuAnees Ahmad AnsariPiaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059

    14. [14]

      Li-Min CuiWei-Hui FangJian Zhang . Polyoxometalates containing aluminum atoms. Chinese Chemical Letters, 2025, 36(10): 110386-. doi: 10.1016/j.cclet.2024.110386

    15. [15]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    18. [18]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    19. [19]

      Pei XuTian-Zi HaoZhi-Tao LiuYi-Qin LiuHui-Xian JiangDong GuoXu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899

    20. [20]

      Hongping ZhaoWeiming Yuan . Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes. Chinese Chemical Letters, 2025, 36(10): 110894-. doi: 10.1016/j.cclet.2025.110894

Metrics
  • PDF Downloads(0)
  • Abstract views(1209)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return