Citation:
Qiao Xu, Yi-Feng Zhu, Zhao Yuan, Hua-Dong Tang. Atom transfer radical polymerization of methyl acrylate, methyl methacrylate and styrene in the presence of trolamine as a highly effective promoter[J]. Chinese Chemical Letters,
;2015, 26(6): 773-778.
doi:
10.1016/j.cclet.2015.03.012
-
Transition metal-mediated atom transfer radical polymerization (ATRP) is a "living"/controlled radical polymerization. Recently, there has been widely increasing interest in reducing the high costs of catalyst separation and post-polymerization purification in ATRP. In this work, trolamine was found to significantly enhance the catalytical performance of CuBr/N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (CuBr/TPEN) and CuBr/tris[2-(dimethylamino) ethylamine] (CuBr/Me6TREN). With the addition of 25-fold molar amount of trolamine relative to CuBr, the catalyst loadings of CuBr/TPEN and CuBr/Me6TREN were dramatically reduced from a catalyst-to-initiator ratio of 1 to 0.01 and 0.05, respectively. The polymerizations of methyl acrylate, methyl methacrylate and styrene still showed first-order kinetics in the presence of trolamine and produced poly(methyl acrylate), poly(methyl methacrylate) and polystyrene with molecular weights close to theoretical values and low polydispersities. These results indicate that trolamine is a highly effective and versatile promoter for ATRP and is promising for potential industrial application.
-
Keywords:
- Atom transfer radical polymerization,
- Catalysis,
- Kinetics,
- Trolamine,
- Promoter
-
-
-
[1]
[1] M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium( II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization,Macromolecules 28 (1995) 1721-1723.
-
[2]
[2] J.S. Wang, K. Matyjaszewski, Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc. 117 (1995) 5614-5615.
-
[3]
[3] Y. Shi, Z.F. Fu, Y.D. Zhang, S.K. Jiao, Synthesis of comb like poly(methyl methacrylate) by atom transfer radical polymerization with poly(ethyl 2-bromoacrylate) as macroinitiator, Chin. Chem. Lett. 14 (2003) 1289-1292.
-
[4]
[4] Y. Yi, X.H. Wan, X.H. Fan, R. Dong, Q.F. Zhou, Synthesis of a novel hybrid liquidcrystalline rod-coil diblock copolymer, J. Polym. Sci. Polym. Chem. 41 (2003) 1799-1806.
-
[5]
[5] X.D. Tang, L.C. Gao, X.H. Fan, Q.F. Zhou, Effect of spacer length on the liquid crystalline property of azobenzene-containing ABA-type triblock copolymers via ATRP, Chin. Chem. Lett. 18 (2007) 1129-1132.
-
[6]
[6] X.D. Tang, L.C. Gao, X.H. Fan, Q.F. Zhou, Synthesis and characterization of H-type amphiphilic liquid crystalline block copolymers by ATRP, Chin. Chem. Lett. 19 (2008) 237-240.
-
[7]
[7] K. Matyjaszewski, M.J. Ziegler, S.V. Arehart, D. Greszta, T. Pakula, Gradient copolymers by atom transfer radical copolymerization, J. Phys. Org. Chem. 13 (2000) 775-786.
-
[8]
[8] Y.J. Xu, C.Y. Pan, Block and star-block copolymers by mechanism transformation. 3. S-(PTHF-PSt)4 and S-(PTHF-PSt-PMMA)4 from living CROP to ATRP, Macromolecules 33 (2000) 4750-4756.
-
[9]
[9] X.D. Tang, X.H. Fan, X.F. Chen, Q.F. Zhou, Progress of atom transfer radical polymerization (ATRP) applied to the synthesis of star polymers, Prog. Chem. 17 (2005) 1089-1095 (in Chinese).
-
[10]
[10] S.G. Gaynor, S. Edelman, K. Matyjaszewski, Synthesis of branched and hyperbranched polystyrenes, Macromolecules 29 (1996) 1079-1081.
-
[11]
[11] M.R. Leduc, C.J. Hawker, J. Dao, J.M.J. Fréchet, Dendritic initiators for "living" radical polymerizations: a versatile approach to the synthesis of dendritic-linear block copolymers, J. Am. Chem. Soc. 118 (1996) 11111-11118.
-
[12]
[12] Y.L. Zhao, C.F. Chen, F. Xi, Synthesis of well-defined dendritic-linear diblock and triblock copolymers by controlled free radical polymerization, Chin. Chem. Lett. 13 (2002) 217-218.
-
[13]
[13] C.H. Hu, A.Q. Zhang, Atom transfer radical polymerization of methyl methacrylate initiated by p-chloromethylstyrene copolymers, Fine Chem. 23 (2006) 298-301 (in Chinese).
-
[14]
[14] F. Simal, A. Demonceau, A.F. Noels, Highly efficient ruthenium-based catalytic systems for the controlled free-radical polymerization of vinyl monomers, Angew. Chem. Int. Ed. 38 (1999) 538-540.
-
[15]
[15] K. Matyjaszewski, S. Coca, C.B. Jasieczek, Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of glycidyl acrylate, Macromol. Chem. Phys. 198 (1997) 4011-4017.
-
[16]
[16] K. Matyjaszewski, S.M. Jo, H.J. Paik, D.A. Shipp, An Investigation into the CuX/2, 2'-Bipyridine (X = Br or Cl) mediated atom transfer radical polymerization of acrylonitrile, Macromolecules 32 (1999) 6431-6438.
-
[17]
[17] X.D. Tang, X.C. Liang, N.F. Han, Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) synthesized by ATRP, Chin. Chem. Lett. 20 (2009) 1353-1356.
-
[18]
[18] K. Matyjaszewski, T. Pintauer, S. Gaynor, Removal of copper-based catalyst in atom transfer radical polymerization using ion exchange resins, Macromolecules 33 (2000) 1476-1478.
-
[19]
[19] Y.Q. Shen, H.D. Tang, S.J. Ding, Catalyst separation in atom transfer radical polymerization, Prog. Polym. Sci. 29 (2004) 1053-1078.
-
[20]
[20] J.H. Xia, T. Johnson, S.G. Gaynor, K. Matyjaszewski, J. De Simone, Atom transfer radical polymerization in supercritical carbon dioxide, Macromolecules 32 (1999) 4802-4805.
-
[21]
[21] J.V. Nguyen, C.W. Jones, Design, behavior, and recycling of silica-supported CuBrbipyridine ATRP catalysts, Macromolecules 37 (2004) 1190-1203.
-
[22]
[22] W. Jakubowski, K. Min, K. Matyjaszewski, Activators regenerated by electron transfer for atom transfer radical polymerization of styrene, Macromolecules 39 (2006) 39-45.
-
[23]
[23] K. Matyjaszewski, W. Jakubowski, K. Min, et al., Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 15309-15314.
-
[24]
[24] D.M. Haddleton, A.M. Heming, D. Kukulj, D.J. Duncalf, A.J. Shooter, Atom transfer polymerization of methyl methacrylate. Effect of acids and effect with 2-bromo-2-methylpropionic acid initiation, Macromolecules 31 (1998) 2016-2018.
-
[25]
[25] K.Matyjaszewski, S. Coca, S.G. Gaynor,M.L.Wei, B.E.Woodworth, Zerovalentmetals in controlled/"living" radical polymerization,Macromolecules 30 (1997) 7348-7350.
-
[26]
[26] K. Min, H.F. Gao, K. Matyjaszewski, Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET), J. Am. Chem. Soc. 127 (2005) 3825-3830.
-
[27]
[27] K. Min, W. Jakubowski, K. Matyjaszewski, AGET ATRP in the presence of air in miniemulsion and in bulk, Macromol. Rapid Commun. 27 (2006) 594-598.
-
[28]
[28] Y.X. Wang, X.L. Li, F.F. Du, et al., Use of alcohols as reducing agents for synthesis of well-defined polymers by AGET-ATRP, Chem. Commun. 48 (2012) 2800-2802.
-
[29]
[29] Y.T. Luo, J.M. Zhuang, X.R. Lin, et al., Study of rate-accelerating of aluminum hydroxide, boric acid, and (2-methylpropyl) boronic acid for atom transfer radical polymerization of styrene, J. Xiamen Univ. 47 (2008) 63-66 (in Chinese).
-
[30]
[30] H. Zhang, D.M. Xu, K.D. Zhang, Effect of inhibitors on atom transfer radical polymerization of MMA, Chin. J. Chem. 23 (2005) 913-917.
-
[31]
[31] H.D. Tang, Y.Q. Shen, B.G. Li, M. Radosz, Tertiary amine-enhanced activity of ATRP catalysts CuBr/TPMA and CuBr/Me6TREN, Macromol. Rapid Commun. 29 (2008) 1834-1838.
-
[32]
[32] H.D. Tang, N. Arulsamy, M. Radosz, et al., Highly active copper-based catalyst for atom transfer radical polymerization, J. Am. Chem. Soc. 128 (2006) 16277-16285.
-
[33]
[33] H.D. Tang, M. Radosz, Y.Q. Shen, CuBr2/N,N,N',N'-tetra-[(2-pyridal)methyl] ethylenediamine/tertiary amine as a highly active and versatile catalyst for atomtransfer radical polymerization via activator generated by electron transfer, Macromol. Rapid Commun. 27 (2006) 1127-1131.
-
[34]
[34] J. Queffelec, S.G. Gaynor, K. Matyjaszewski, Optimization of atom transfer radical polymerization using Cu(I)/tris(2-(dimethylamino)ethyl)amine as a catalyst, Macromolecules 33 (2000) 8629-8639.
-
[35]
[35] X. Huang, M.J. Wirth, Surface initiation of living radical polymerization for growth of tethered chains of low polydispersity, Macromolecules 32 (1999) 1694-1696.
-
[36]
[36] J.H. Xia, S.G. Gaynor, K. Matyjaszewski, Controlled/"living" radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature, Macromolecules 31 (1998) 5958-5959.
-
[37]
[37] J.F. Weiss, G. Tollin, J.T. Yoke, Reactions of triethylamine with copper halides. II. Internal oxidation-reduction of dichlorobis(triethylamine)copper(II), Inorg. Chem. 3 (1964) 1344-1348.
-
[38]
[38] M.T. Caudle, V.L. Pecoraro, Mechanism for the reduction of the mixed-valent MnIIIMnIV[2-OHsalpn]2+ complex by tertiary amines, Inorg. Chem. 39 (2000) 5831-5837.
-
[1]
-
-
-
[1]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[2]
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
-
[3]
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
-
[4]
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
-
[5]
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
-
[6]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[7]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[8]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[9]
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
-
[10]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[11]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[12]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[13]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[14]
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
-
[15]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[16]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[17]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[18]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[19]
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
-
[20]
Tengfei Yang , Jingshuai Xiao , Xiao Sun , Yan Song , Chaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(728)
- HTML views(3)