Citation: Mohamed K. Abd El-Rahman, Hala E. Zaazaa, Samah S. Abbas, Badr El-Zeany, Zeinab A. EL-Sherif, Dalia A. EL-Haddad. A comparative study of liquid and solid inner contact roxatidine acetate ion-selective electrode membranes[J]. Chinese Chemical Letters, ;2015, 26(6): 714-720. doi: 10.1016/j.cclet.2015.03.010 shu

A comparative study of liquid and solid inner contact roxatidine acetate ion-selective electrode membranes

  • Corresponding author: Hala E. Zaazaa, 
  • Received Date: 17 September 2014
    Available Online: 15 December 2014

  • A comparative study was conducted using two designs of a roxatidine acetate (ROX)-selective electrode; a conventional liquid inner contact called electrode A and a graphite-coated solid contact called electrode B. The fabrication of electrodes was based on roxatidine-tetraphenylborate (ROX-TPB) as an ion-association complex in a PVC matrix using different plasticizers. Electrode A has a linear dynamic range of 2.2×10-5 mol/L to 1.0×10-2 mol/L, with a Nernstian slope of 54.7 mV/decade and a detection limit of 1.4×10-6 mol/L. Electrode B shows linearity over the concentration range of 1.0×10-6 mol/L to 1.0×10-2 mol/L, with a Nernstian slope of 51.2 mV/decade and a limit of detection of 1.1×10-7 mol/L which is remarkably improved as a result of diminishing ion fluxes in this solid contact, ion-selective electrode. The proposed sensors display useful analytical characteristics for the determination of ROX in bulk powder and its pharmaceutical formulation. The present electrodes show clear discrimination of ROX from several inorganic, organic ions, sugars, some common drug excipients and the degradation product (3-[3-(1-piperidinyl methyl) phenoxy] propyl amine) of ROX. Furthermore, the proposed electrodes were utilized for the determination of ROX in human plasma, where electrode B covers drug Cmax which indicated its applicability to pharmacokinetic, bioavailability and bioequivalent studies. The results obtained by the proposed electrodes were statistically analyzed and compared with those obtained by a reported HPLC method. No significant difference for either accuracy or precision was observed.
  • 加载中
    1. [1]

      [1] N.J.O. Maryadele, An Encyclopedia of Chemicals, Drug and Biologicals, 14th ed., The Merck Index, Division of Merck and Co. Inc., Merck Research Laboratories, White House Station, NJ, USA, 2006p. 1429.

    2. [2]

      [2] S. Honma, R. Akutsu, S. Iwamura, Y. Kawabe, K. Tsukamoto, Metabolic fate of 2-acetoxy-N-[3-[m-(1-piperidinylmethyl)phenoxy]propyl] acetamide hydrochloride (TZU-0460), a new H2-receptor antagonist (8) the metabolism in man, Pharmacometrics 30 (1985) 555-563.

    3. [3]

      [3] W. Rösch, A comparison of roxatidine acetate 150 mg once daily and 75 mg twice daily in gastric ulcer healing, Drugs 35 (1988) 127-133.

    4. [4]

      [4] C.W. Kuo, W.J. Liaw, P.W. Huang, L.H. Pao, A rapid and sensitive HPLC method for determination of roxatidine in human plasma, J. Food Drug Anal. 16 (2008) 1-5.

    5. [5]

      [5] B.S. Shin, J.W. Choi, J.P. Balthasar, D.K. Hong, J.J. Kim, S.D. Yoo, Determination of roxatidine in human plasma by liquid chromatography/electrospray mass spectrometry and application to a clinical pharmacokinetic study, Rapid Commun. Mass Spectrom. 21 (2007) 329-335.

    6. [6]

      [6] J.H. Ryu, S.J. Choi, H.W. Lee, S.K. Choi, K.T. Lee, Quantification of roxadine in human plasma by liquid chromatography electrospray ionization tandem mass spectrometry: application to a bioequivalence study, J. Chromatogr. B 876 (2008) 143-147.

    7. [7]

      [7] S. Iwamura, K. Shibata, Y. Kawabe, K. Tsukamoto, S. Honma, The metabolism of roxatidine acetate hydrochloride in rat and dog liver homogenates, J. Pharmacobiodyn. 10 (1987) 229-235.

    8. [8]

      [8] J.L. Burrows, K.W. Jolley, D.J. Sullivan, Determination of roxatidine in human plasma, urine and milk by capillary gas chromatography using nitrogen-selective detection, J. Chromatogr. B 432 (1988) 199-208.

    9. [9]

      [9] N. Rahman, M. Kashif, Optimized and validated spectrophotometric methods for the determination of roxatidine acetate hydrochloride in drug formulations using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and p-chloranilic acid, J. Anal. Chem. 60 (2005) 636-643.

    10. [10]

      [10] J.J.B. Nevado, G.C. Penalvo, R.M.R. Dorado, Evaluation of non-aqueous capillary zone electrophoresis for the determination of histamine H2 receptor antagonists in pharmaceuticals, Anal. Sci. 27 (2011) 427-432.

    11. [11]

      [11] S.S. Abbas, H.E. Zaazaa, Z.A. EL-Sherif, D.A. Elhadad, B. EL-Zeany, Optimization of stability-indicating chromatographic methods for the determination of roxatidine acetate in the presence of its degradation products, Int. J. Pharm. Pharm. Sci. 6 (2014) 149-157.

    12. [12]

      [12] A. Radu, A.J. Meir, E. Bakker, Dynamic diffusion model for tracing the real-time potential response of polymeric membrane ion-selective electrodes, Anal. Chem. 76 (2004) 6402-6409.

    13. [13]

      [13] S. Mathison, E. Bakker, Effect of transmembrane electrolyte diffusion on the detection limit of carrier-based potentiometric ion sensors, Anal. Chem. 70 (1998) 303-309.

    14. [14]

      [14] E. Bakker, E. Pretsch, Potentiometric sensors for trace-level analysis, TrAC Trends Anal. Chem. 24 (2005) 199-207.

    15. [15]

      [15] H. Ibrahim, Y.M. Issa, H.M. Abu-Shawish, Improving the detection limits of antispasmodic drugs electrodes by using modified membrane sensors with inner solid contact, J. Pharm. Biomed. Anal. 44 (2007) 8-15.

    16. [16]

      [16] T. Masadome, J. Yang, T. Imato, Effect of plasticizer on the performance of the surfactant-selective electrode based on a poly(vinyl chloride) membrane with no added ion-exchanger, Microchim. Acta 144 (2004) 217-220.

    17. [17]

      [17] I. Švancara, K. Vytřas, J. Barek, J. Zima, Carbon paste electrodes in modern electroanalysis, Crit. Rev. Anal. Chem. 31 (2001) 311-345.

    18. [18]

      [18] H.M. Abu-Shawish, Potentiometric response of modified carbon paste electrode based on mixed ion exchangers, Electroanalysis 20 (2008) 491-497.

    19. [19]

      [19] V.S. Bhat, V.S. Ijeri, K.A. Srivastava, Coated wire lead(II) selective potentiometric sensor based on 4-tert-butylcalix[6]arene, Sens. Actuators B 99 (2004) 98-105.

    20. [20]

      [20] H.M. Abu Shawish, A.M. Khedr, K.I. Abed-Almonem, M. Gaber, A comparative study of solid and liquid inner contact benzalkonium chloride ion-selective electrode membranes, Talanta 101 (2012) 211-219.

    21. [21]

      [21] M.A.A. Pérez, L.P. Marín, J.C. Quintana, M.Y. Pedram, Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination, Sens. Actuators B 89 (2003) 262-268.

    22. [22]

      [22] W. Wroblewski, K. Wojciechowski, A. Dybko, et al., Uranyl salophenes as ionophores for phosphate-selective electrodes, Sens. Actuators B: Chem. 68 (2000) 313-318.

    23. [23]

      [23] R. IUPAC, Analytical chemistry division, commission on analytical nomenclature, Pure Appl. Chem. 72 (2000) 1851-2082.

    24. [24]

      [24] N.T. Abdel Ghani, M.S. Rizk, R.M. El-Nashar, Salbutamol plastic membrane electrodes based on individual and mixed ion-exchangers of salbutamolium phosphotungstate and phosphomolybdate, Analyst 125 (2000) 1129-1133.

    25. [25]

      [25] H.B. Lassman, I. Ho, S.K. Puri, R. Sabo, M.R. Scheffler, The pharmacodynamics and pharmacokinetics of multiple doses of the new H2-receptor antagonist, roxatidine acetate, in healthy men, Drugs 35 (1988) 53-64.

  • 加载中
    1. [1]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    2. [2]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    3. [3]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    4. [4]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    5. [5]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    6. [6]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    7. [7]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    8. [8]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    9. [9]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    10. [10]

      Xiaoxiao WangBolun WangFenfen JiJie YanJiacheng FangDoudou ZhangJi XuJing JiXinran HaoHemi LuanYanjun HongShulan QiuMin LiZhu YangWenlan LiuXiaodong CaiZongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653

    11. [11]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    12. [12]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    13. [13]

      Hongjie GuoQiang WeiYangyang WuWei QiuHongliang LiChangyong Zhang . Enhanced nitrate removal from groundwater using a conductive spacer in flow-electrode capacitive deionization. Chinese Chemical Letters, 2024, 35(8): 109325-. doi: 10.1016/j.cclet.2023.109325

    14. [14]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    15. [15]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    16. [16]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    17. [17]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    18. [18]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    19. [19]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    20. [20]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

Metrics
  • PDF Downloads(0)
  • Abstract views(689)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return