Citation:
Zhijie Wang, Elizabeth S. Brown, Stephen Maldonado. Hybrid solar cells constructed of macroporous n-type GaP coated with PEDOT:PSS[J]. Chinese Chemical Letters,
;2015, 26(4): 469-473.
doi:
10.1016/j.cclet.2015.03.009
-
Hybrid organic-inorganic solar cell devices were fabricated utilizing macroporous n-type GaP and poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS). The high-aspect ratio structures of the macroporous GaP resulted in higher photocurrent and external quantum yield as a function of wavelength. Photocurrent-voltage measurements as a function of light intensity revealed information on the dependence of short-circuit current (Jsc) and open-circuit voltage (Voc) on light intensity. Under 1.0 Sun illumination, hybrid macroporous GaP/PEDOT:PSS devices showed Jsc of 2.34 mA cm-2, Voc of 0.95 V, fill factor of 0.54, and overall efficiency of 1.21%. The extent of the influence of dopant density of GaP on hybrid device performance was probed with current density-voltage measurements. The addition of a gold nanoparticle coating on macroporous GaP prior to PEDOT:PSS coating showed increased device performance, with overall efficiency of 1.81%. Gold-modified planar GaP/PEDOT:PSS showed decreased Jsc and Voc values and lower external quantum yield over all wavelengths.
-
Keywords:
- Gallium phosphide,
- Organic-inorganic solar cell,
- Macroporous
-
-
-
[1]
[1] B.A. Gregg, Excitonic solar cells, J. Phys. Chem. B 107 (2003) 4688-4698.
-
[2]
[2] W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells, Science 295 (2002) 2425-2427.
-
[3]
[3] C. Sanchez, B. Julían, P. Belleville, M. Popall, Applications of hybrid organic- inorganic nanocomposites, J. Mater. Chem. 15 (2005) 3559-3592.
-
[4]
[4] W.J.E. Beek, M.M. Wienk, M. Kemerink, X.N. Yang, R.A.J. Janssen, Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells, J. Phys. Chem. B 109 (2005) 9505-9516.
-
[5]
[5] W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer, Adv. Mater. 16 (2004) 1009-1013.
-
[6]
[6] G. Mariani, R.B. Laghumavarapu, B.T. de Villers, et al., Hybrid conjugated polymer solar cells using patterned GaAs nanopillars, Appl. Phys. Lett. 97 (2010) 013107.
-
[7]
[7] C.K. Yong, K. Noori, Q. Gao, et al., Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer, Nano Lett. 12 (2012) 6293-6301.
-
[8]
[8] J.H. Heo, S.H. Im, J.H. Noh, et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics 7 (2013) 487-491.
-
[9]
[9] Y. Ding, R. Gresback, Q.M. Liu, et al., Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance, Nano Energy 9 (2014) 25-31.
-
[10]
[10] V. Svrcek, D. Mariotti, T. Yamanari, K. Matsubara, M. Kondo, Integration of surfactant-free silicon nanocrystal in hybrid solar cells, Jpn. J. Appl. Phys. 51 (2012) 10NE25.
-
[11]
[11] S. Kim, J.H. Lee, M.T. Swihart, J.C. Lee, J.Y. Kim, Silicon nanoparticle size-dependent open circuit voltage in an organic-inorganic hybrid solar cell, Curr. Appl. Phys. 14 (2014) 127-131.
-
[12]
[12] R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Roll-to-roll fabrication of polymer solar cells, Mater. Today 15 (2012) 36-49.
-
[13]
[13] F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies, J. Mater. Chem. 19 (2009) 5442-5451.
-
[14]
[14] J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synth. Met. 126 (2002) 311-316.
-
[15]
[15] R. Steim, F.R. Kogler, C.J. Brabec, Interface materials for organic solar cells, J. Mater. Chem. 20 (2010) 2499-2512.
-
[16]
[16] S.A. Carter, M. Angelopoulos, S. Karg, P.J. Brock, J.C. Scott, Polymeric anodes for improved polymer light-emitting diode performance, Appl. Phys. Lett. 70 (1997) 2067-2069.
-
[17]
[17] Y. Cao, G. Yu, C. Zhang, R. Menon, A.J. Heeger, Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode, Synth. Met. 87 (1997) 171-174.
-
[18]
[18] H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces, Adv. Mater. 11 (1999) 605-625.
-
[19]
[19] A. Kahn, N. Koch, W.Y. Gao, Electronic structure and electrical properties of interfaces between metals and p-conjugated molecular films, J. Polym. Sci. Pol. Phys. 41 (2003) 2529-2548.
-
[20]
[20] M.J. Price, J.M. Foley, R.A. May, S. Maldonado, Comparison of majority carrier charge-transfer velocities at Si/polymer and Si/metal photovoltaic heterojunctions, Appl. Phys. Lett. 97 (3) (2010) 083503.
-
[21]
[21] J.F. McCann, L.J. Handley, The photoelectrochemical effect at a p-GaP electrode, Nature 283 (1980) 843-845.
-
[22]
[22] M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on ptype gallium phosphide in liquid junction solar cells, Nature 275 (1978) 115-116.
-
[23]
[23] P.A. Kohl, A.J. Bard, Semiconductor electrodes. 13. Characterization and behavior of n-type zinc oxide, cadmium sulfide, and gallium phosphide electrodes in acetonitrile solutions, J. Am. Chem. Soc. 99 (1977) 7531-7539.
-
[24]
[24] J.A. Turner, A realizable renewable energy future, Science 285 (1999) 687-689.
-
[25]
[25] M.P. Dare-Edwards, A. Hamnett, J.B. Goodenough, The efficiency of photogeneration of hydrogen at p-type III/V semiconductors, J. Electroanal. Chem. 119 (1981) 109-123.
-
[26]
[26] C.M. Gronet, N.S. Lewis, Design of a 13% efficient n-GaAs1 xPx semiconductor- liquid junction solar cell, Nature 300 (1982) 733-735.
-
[27]
[27] J.P. Petit, P. Chartier, M. Beley, J.P. Deville, Molecular catalysts in photoelectrochemical cells: study of an efficient system for the selective photoelectroreduction of CO2: p-GaP or p-GaAs/Ni(cyclam)2+, aqueous medium, J. Electroanal. Chem. 269 (1989) 267-281.
-
[28]
[28] M.J. Price, S. Maldonado, Macroporous n-GaP in nonaqueous regenerative photoelectrochemical cells, J. Phys. Chem. C 113 (2009) 11988-11994.
-
[29]
[29] W. Wen, A.I. Carim, S.M. Collins, et al., Structural and photoelectrochemical properties of GaP nanowires annealed in NH3, J. Phys. Chem. C 115 (2011) 22652-22661.
-
[30]
[30] J.W. Sun, C. Liu, P.D. Yang, Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction, J. Am. Chem. Soc. 133 (2011) 19306-19309.
-
[31]
[31] J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc. 11 (1951) 55-75.
-
[32]
[32] C.R. Allen, J.H. Jeon, J.M. Woodall, Simulation assisted design of a gallium phosphide n-p photovoltaic junction, Sol. Energy Mater. 94 (2010) 865-868.
-
[33]
[33] C.R. Allen, J.M. Woodall, J.H. Jeon, Results of a gallium phosphide photovoltaic junction with an AR coating under concentration of natural sunlight, Sol. Energy Mater. 95 (2011) 2655-2658.
-
[34]
[34] M.A. Butler, D.S. Ginley, P-type GaP as a semiconducting photoelectrode, J. Electrochem. Soc. 127 (1980) 1273-1278.
-
[35]
[35] J. Mukherjee, S. Peczonczyk, S. Maldonado, Wet chemical functionalization of III- V semiconductor surfaces: alkylation of gallium phosphide using a grignard reaction sequence, Langmuir 26 (2010) 10890-10896.
-
[36]
[36] S.L. Peczonczyk, E.S. Brown, S. Maldonado, Secondary functionalization of allylterminated GaP(1 1 1)A surfaces via heck cross-coupling metathesis, hydrosilylation, and electrophilic addition of bromine, Langmuir 30 (2014) 156-164.
-
[37]
[37] E.S. Brown, S.L. Peczonczyk, Z.J. Wang, S. Maldonado, Photoelectrochemical properties of CH3-terminated p-type GaP(1 1 1)A, J. Phys. Chem. C 118 (2014) 11593-11600.
-
[38]
[38] E.S. Brown, S.L. Peczonczyk, S. Maldonado, Wet chemical functionalization of GaP(1 1 1)B through a williamson ether-type reaction, J. Phys. Chem. C 119 (2015) 1338-1345.
-
[39]
[39] A. Yoshida, N. Toshima, Gold nanoparticle and gold nanorod embedded PEDOT: PSS thin films as organic thermoelectric materials, J. Electron. Mater. 43 (2014) 1492-1497.
-
[40]
[40] Z.H. Chen, Y.B. Tang, C.P. Liu, et al., Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for schottky barrier photovoltaic cells, J. Phys. Chem. C 113 (2009) 13433-13437.
-
[41]
[41] S. Jayaraman, P.S. Kumar, D. Mangalaraj, et al., Enhanced luminescence and charge separation in polythiophene-grafted, gold nanoparticle-decorated, 1-D ZnO nanorods, RSC Adv. 4 (2014) 11288-11294.
-
[1]
-
-
-
[1]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[2]
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
-
[3]
Yan Cheng , Hai-Quan Yao , Ya-Di Zhang , Chao Shi , Heng-Yun Ye , Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358
-
[4]
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
-
[5]
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
-
[6]
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257
-
[7]
Weihong Ding , Kaiyue Song , Xianglong Li , Xiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495
-
[8]
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
-
[9]
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
-
[10]
Honglin Gao , Chunlin Yuan , Hongyu Chen , Aiyi Dong , Pan Gao , Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561
-
[11]
Zhiyang Zhang , Yi Chen , Yingnan Zhang , Chuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083
-
[12]
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
-
[13]
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
-
[14]
Yuling Ma , Dongqing Liu , Tao Zhang , Chengjie Song , Dongmei Liu , Peizhi Wang , Wei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000
-
[15]
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
-
[16]
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
-
[17]
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
-
[18]
Chuang LIU , Lichao SUN , Qingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406
-
[19]
Chong Liu , Nanthi Bolan , Anushka Upamali Rajapaksha , Hailong Wang , Paramasivan Balasubramanian , Pengyan Zhang , Xuan Cuong Nguyen , Fayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960
-
[20]
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(580)
- HTML views(4)