Citation: Cai-Hou Lin, Xue-Xia Lin, Ling Lin, Jun-Ming Wang, Zhi-Xiong Lin, Jin-Ming Lin. Development of LC-MS method for analysis of paclitaxel-inhibited growth and enhanced therapeutic response in human glioblastoma cells[J]. Chinese Chemical Letters, ;2015, 26(10): 1225-1230. doi: 10.1016/j.cclet.2015.03.007 shu

Development of LC-MS method for analysis of paclitaxel-inhibited growth and enhanced therapeutic response in human glioblastoma cells

  • Corresponding author: Zhi-Xiong Lin,  Jin-Ming Lin, 
  • Received Date: 7 February 2015
    Available Online: 3 March 2015

    Fund Project: We thank Dr. Yan-Li Guo, Qian Yang (The Frontier Science Department of Shiseido China Co., Ltd.) (The Frontier Science Department of Shiseido China Co., Ltd.)CERS-China Equipment and Education Resources System (No. CERS-1-75). (Department of Chemistry, Tsinghua University)

  • Glioma stem cells are considered responsible for drug resistance and glioma relapse resulting in poor prognosis in glioblastomamultiforme. SU3 glioma cell is a highly invasive glioma stemcell line from the patients with glioblastoma multifrome. It is of great significance to study the efficacy and molecular mechanism for anticancer drug effects on SU3 glioma cells. In this work, we develop a liquid chromatography-mass spectrometry (LC-MS) method for direct analysis of the role of drugs (paclitaxel) on SU3 glioma cells at themolecular level. Weuse the specific fluorescence dyes to evaluate cell viability, the levels of ROS and GSH when the cells were treated with drugs. In addition, the LC-MS platform was successfully employed to detect the amount of 6-O-methylguanine, demonstrating that it is effective to induce cell apoptosis and enhance the cytotoxic response of SU3 glioma cells. The analytical linear equals are Y=9.49×105X+2.42×104 for 6-O-methylguanine (R2=0.9998) and Y=4.72×104X+2.21×103(R2=0.9996) for 7-methylguanine. Thus, the combination of cell-specific fluorescence dyes and LC-MS method enables us to reveal the molecular mechanism of paclitaxel-inhibited growth and enhanced therapeutic response in the chemotherapy for glioma multiforme.
  • 加载中
    1. [1]

      [1] D.N. Louis, H. Ohgaki, O.D. Wiestler, et al., The 2007WHOclassification of tumours of the central nervous system, Acta Neuropathol. 114(2007) 97-109.

    2. [2]

      [2] B. Auffinger, A.L. Tobias, Y. Han, et al., Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy, Cell Death Differ. 21(2014) 1119-1131.

    3. [3]

      [3] E.K. Nduom, C.G. Hadjipanayis, E.G. Van Meir, Glioblastoma cancer stem-like cells:implications for pathogenesis and treatment, Cancer J. 18(2012) 100-106.

    4. [4]

      [4] S.D. Bao, Q.L. Wu, R.E. McLendon, et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature 444(2006) 756-760.

    5. [5]

      [5] J. Chen, Y.J. Li, T.S. Yu, et al., A restricted cell population propagates glioblastoma growth after chemotherapy, Nature 488(2012) 522-526.

    6. [6]

      [6] D. Beier, J.B. Schulz, C.P. Beier, Chemoresistance of glioblastoma cancer stem cells-much more complex than expected, Mol. Cancer 10(2011) 128.

    7. [7]

      [7] Y. Wan, X.F. Fei, Z.M. Wang, et al., Expression of miR-125b in the new, highly invasive glioma stem cell and progenitor cell line SU3, Chin. J. Cancer 31(2012) 207-214.

    8. [8]

      [8] S.M. Chang, P. Theodosopoulos, K. Lamborn, et al., Temozolomide in the treatment of recurrent malignant glioma, Cancer 100(2004) 605-611.

    9. [9]

      [9] D.T.M. Chan, W.S. Poon, Y.L. Chan, H.K. Ng, Temozolomide in the treatment of recurrent malignant glioma in Chinese patients, Hong Kong Med. J. 11(2005) 452-456.

    10. [10]

      [10] H.S. Friedman, T. Kerby, H. Calvert, Temozolomide and treatment of malignant glioma, Clin. Cancer Res. 6(2000) 2585-2597.

    11. [11]

      [11] M. Lacroix, D. Abi-Said, D.R. Fourney, et al., A multivariate analysis of 416 patients with glioblastoma multiforme:prognosis, extent of resection, and survival, J. Neurosurg. 95(2001) 190-198.

    12. [12]

      [12] X.Y. Ma, Y.F. Lv, J. Liu, et al., Survival analysis of 205 patients with glioblastoma multiforme:clinical characteristics, treatment and prognosis in China, J. Clin. Neurosci. 16(2009) 1595-1598.

    13. [13]

      [13] J.-F. Mineo, A. Bordron, M. Baroncini, et al., Prognosis factors of survival time in patients with glioblastoma multiforme:a multivariate analysis of 340 patients, Acta Neurochir. 149(2007) 245-253.

    14. [14]

      [14] Z.N. Demidenko, S. Kalurupalle, C. Hanko, et al.,Mechanism of G1-like arrest by low concentrations of paclitaxel:next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis, Oncogene 27(2008) 4402-4410.

    15. [15]

      [15] A. Thakur, N. Joshi, T. Shanmugam, R. Banerjee, Proapoptotic miltefosine nanovesicles show synergism with paclitaxel:implications for glioblastoma multiforme therapy, Cancer Lett. 334(2013) 274-283.

    16. [16]

      [16] S. Jeyapalan, J. Boxerman, J. Donahue, et al., Paclitaxel poliglumex, temozolomide, and radiation for newly diagnosed high-grade glioma:a Brown University Oncology Group Study, Am. J. Clin. Oncol. 37(2014) 444-449.

    17. [17]

      [17] J.A. Sparano, M.L. Wang, S. Martino, et al., Weekly paclitaxel in the adjuvant treatment of breast cancer, N. Engl. J. Med. 358(2008) 1663-1671.

    18. [18]

      [18] S. Kumar, H. Mahdi, C. Bryant, et al., Clinical trials and progress with paclitaxel in ovarian cancer, Int. J. Women's Health 2(2010) 411-427.

    19. [19]

      [19] G.R. Blumenschein Jr., F. Kabbinavar, H. Menon, et al., A phase II, multicenter, open-label randomized study of motesanib or bevacizumab in combination with paclitaxel and carboplatin for advanced nonsquamous non-small-cell lung cancer, Ann. Oncol. 22(2011) 2057-2067.

    20. [20]

      [20] H.H. Wilke, K. Muro, E. Van Cutsem, et al., Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW):a doubleblind, randomised phase 3 trial, Lancet Oncol. 15(2014) 1224-1235.

    21. [21]

      [21] A.E. Sosa, J.J. Grau, L. Feliz, et al., Outcome of patients treated with palliative weekly paclitaxel plus cetuximab in recurrent head and neck cancer after failure of platinum-based therapy, Eur. Arch. Otorhinolaryngol. 271(2014) 373-378.

    22. [22]

      [22] J.J. Grau, M. Caballero, E. Verger, M. Monzo, J. Blanch, Weekly paclitaxel for platinresistant stage IV head and neck cancer patients, Acta Otolaryngol. 129(2009) 1294-1299.

    23. [23]

      [23] S.H. Tseng, M.S. Bobola, M.S. Berger, J.R. Silber, Characterization of paclitaxel (Taxol) sensitivity in human glioma- and medulloblastoma-derived cell lines, Neuro Oncol. 1(1999) 101-108.

    24. [24]

      [24] A. Goel, B.B. Aggarwal, Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs, Nutr. Cancer 62(2010) 919-930.

    25. [25]

      [25] A.R. Dehdashti, M.E. Hegi, L. Regli, A. Pica, R. Stupp, New trends in the medical management of glioblastoma multiforme:the role of temozolomide chemotherapy, Neurosurg. Focus 20(2006) E6.

    26. [26]

      [26] J.L. Villano, T.E. Seery, L.R. Bressler, Temozolomide in malignant gliomas:current use and future targets, Cancer Chemother. Pharmacol. 64(2009) 647-655.

    27. [27]

      [27] M.-S. Tang, J.B. Zheng, M.F. Denissenko, G.P. Pfeifer, Y. Zheng, Use of UvrABC nuclease to quantify benzo[a]pyrene diol epoxide-DNA adduct formation at methylated versus unmethylated CpG sites in the p53 gene, Carcinogenesis 20(1999) 1085-1089.

    28. [28]

      [28] Q.S. Chen, J. Wu, Y.D. Zhang, J.M. Lin, Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry, Anal. Chem. 84(2012) 1695-1701.

    29. [29]

      [29] J. Zhang, J. Wu, H.F. Li, Q.S. Chen, J.M. Lin, An in vitro liver model on microfluidic device for analysis of capecitabine metabolite using mass spectrometer as detector, Biosens. Bioelectron. 68(2015) 322-328.

    30. [30]

      [30] J. Wu, Q.S. Chen, W. Liu, J.M. Lin, A simple and versatile microfluidic cell density gradient generator for quantum dot cytotoxicity assay, Lab Chip 13(2013) 1948-1954.

    31. [31]

      [31] R.Z. Ning, S.Q. Wang, J. Wu, F. Wang, J.M. Lin, ZnO nanowire arrays exhibit cytotoxic distinction to cancer cells with different surface charge density:cytotoxicity is charge-dependent, Small 10(2014) 4113-4117.

    32. [32]

      [32] M.A. Kang, E.-Y. So, A.L. Simons, D.R. Spitz, T. Ouchi, DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway, Cell Death Dis. 3(2012) e249.

    33. [33]

      [33] A.A. Alfadda, R.M. Sallam, Reactive oxygen species in health and disease, J. Biomed. Biotechnol. 2012(2012) 936486.

    34. [34]

      [34] T. Finkel, Signal transduction by reactive oxygen species, J. Cell Biol. 194(2011) 7-15.

    35. [35]

      [35] E. Laborde, Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death, Cell Death Differ. 17(2010) 1373-1380.

    36. [36]

      [36] M.L. Circu, T.Y. Aw, Glutathione and modulation of cell apoptosis, BBA-Mol. Cell Res. 1823(2012) 1767-1777.

    37. [37]

      [37] K. Aquilano, S. Baldelli, M.R. Ciriolo, Glutathione:new roles in redox signaling for an old antioxidant, Front. Pharmacol. 5(2014) 196.

    38. [38]

      [38] M.J. Morgan, Z.G. Liu, Crosstalk of reactive oxygen species and NF-kB signaling, Cell Res. 21(2011) 103-115.

    39. [39]

      [39] T. Hagen, Oxygen versus reactive oxygen in the regulation of HIF-1a:the balance tips, Biochem. Res. Int. 2012(2012) 436981.

    40. [40]

      [40] T. Maraldi, C. Prata, C. Caliceti, et al., VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis, Int. J. Oncol. 36(2010) 1581-1589.

    41. [41]

      [41] J. Chen, R.M. McKay, L.F. Parada, Malignant glioma:lessons from genomics, mouse models, and stem cells, Cell 149(2012) 36-47.

  • 加载中
    1. [1]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    2. [2]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

    3. [3]

      Jiechen LiuXiaoguang LiRuiyang XiaYuqi WangFenghe ZhangYongzhi PangQing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619

    4. [4]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    5. [5]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    6. [6]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    7. [7]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    8. [8]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    9. [9]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    10. [10]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    11. [11]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    12. [12]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    13. [13]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    14. [14]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    15. [15]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    16. [16]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    17. [17]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    18. [18]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    19. [19]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    20. [20]

      Xiaoshuai WuBailei WangYichen LiXiaoxuan GuanMingjing YinWenquan LvYin ChenFei LuTao QinHuyang GaoWeiqian JinYifu HuangCuiping LiMing GaoJunyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211

Metrics
  • PDF Downloads(0)
  • Abstract views(820)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return