Citation:
Cai-Hou Lin, Xue-Xia Lin, Ling Lin, Jun-Ming Wang, Zhi-Xiong Lin, Jin-Ming Lin. Development of LC-MS method for analysis of paclitaxel-inhibited growth and enhanced therapeutic response in human glioblastoma cells[J]. Chinese Chemical Letters,
;2015, 26(10): 1225-1230.
doi:
10.1016/j.cclet.2015.03.007
-
Glioma stem cells are considered responsible for drug resistance and glioma relapse resulting in poor prognosis in glioblastomamultiforme. SU3 glioma cell is a highly invasive glioma stemcell line from the patients with glioblastoma multifrome. It is of great significance to study the efficacy and molecular mechanism for anticancer drug effects on SU3 glioma cells. In this work, we develop a liquid chromatography-mass spectrometry (LC-MS) method for direct analysis of the role of drugs (paclitaxel) on SU3 glioma cells at themolecular level. Weuse the specific fluorescence dyes to evaluate cell viability, the levels of ROS and GSH when the cells were treated with drugs. In addition, the LC-MS platform was successfully employed to detect the amount of 6-O-methylguanine, demonstrating that it is effective to induce cell apoptosis and enhance the cytotoxic response of SU3 glioma cells. The analytical linear equals are Y=9.49×105X+2.42×104 for 6-O-methylguanine (R2=0.9998) and Y=4.72×104X+2.21×103(R2=0.9996) for 7-methylguanine. Thus, the combination of cell-specific fluorescence dyes and LC-MS method enables us to reveal the molecular mechanism of paclitaxel-inhibited growth and enhanced therapeutic response in the chemotherapy for glioma multiforme.
-
Keywords:
- LC-MS,
- Drug analysis,
- SU3 glioma cell,
- Paclitaxel,
- Cell cycle arrest,
- ROS assay
-
-
-
[1]
[1] D.N. Louis, H. Ohgaki, O.D. Wiestler, et al., The 2007WHOclassification of tumours of the central nervous system, Acta Neuropathol. 114(2007) 97-109.
-
[2]
[2] B. Auffinger, A.L. Tobias, Y. Han, et al., Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy, Cell Death Differ. 21(2014) 1119-1131.
-
[3]
[3] E.K. Nduom, C.G. Hadjipanayis, E.G. Van Meir, Glioblastoma cancer stem-like cells:implications for pathogenesis and treatment, Cancer J. 18(2012) 100-106.
-
[4]
[4] S.D. Bao, Q.L. Wu, R.E. McLendon, et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature 444(2006) 756-760.
-
[5]
[5] J. Chen, Y.J. Li, T.S. Yu, et al., A restricted cell population propagates glioblastoma growth after chemotherapy, Nature 488(2012) 522-526.
-
[6]
[6] D. Beier, J.B. Schulz, C.P. Beier, Chemoresistance of glioblastoma cancer stem cells-much more complex than expected, Mol. Cancer 10(2011) 128.
-
[7]
[7] Y. Wan, X.F. Fei, Z.M. Wang, et al., Expression of miR-125b in the new, highly invasive glioma stem cell and progenitor cell line SU3, Chin. J. Cancer 31(2012) 207-214.
-
[8]
[8] S.M. Chang, P. Theodosopoulos, K. Lamborn, et al., Temozolomide in the treatment of recurrent malignant glioma, Cancer 100(2004) 605-611.
-
[9]
[9] D.T.M. Chan, W.S. Poon, Y.L. Chan, H.K. Ng, Temozolomide in the treatment of recurrent malignant glioma in Chinese patients, Hong Kong Med. J. 11(2005) 452-456.
-
[10]
[10] H.S. Friedman, T. Kerby, H. Calvert, Temozolomide and treatment of malignant glioma, Clin. Cancer Res. 6(2000) 2585-2597.
-
[11]
[11] M. Lacroix, D. Abi-Said, D.R. Fourney, et al., A multivariate analysis of 416 patients with glioblastoma multiforme:prognosis, extent of resection, and survival, J. Neurosurg. 95(2001) 190-198.
-
[12]
[12] X.Y. Ma, Y.F. Lv, J. Liu, et al., Survival analysis of 205 patients with glioblastoma multiforme:clinical characteristics, treatment and prognosis in China, J. Clin. Neurosci. 16(2009) 1595-1598.
-
[13]
[13] J.-F. Mineo, A. Bordron, M. Baroncini, et al., Prognosis factors of survival time in patients with glioblastoma multiforme:a multivariate analysis of 340 patients, Acta Neurochir. 149(2007) 245-253.
-
[14]
[14] Z.N. Demidenko, S. Kalurupalle, C. Hanko, et al.,Mechanism of G1-like arrest by low concentrations of paclitaxel:next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis, Oncogene 27(2008) 4402-4410.
-
[15]
[15] A. Thakur, N. Joshi, T. Shanmugam, R. Banerjee, Proapoptotic miltefosine nanovesicles show synergism with paclitaxel:implications for glioblastoma multiforme therapy, Cancer Lett. 334(2013) 274-283.
-
[16]
[16] S. Jeyapalan, J. Boxerman, J. Donahue, et al., Paclitaxel poliglumex, temozolomide, and radiation for newly diagnosed high-grade glioma:a Brown University Oncology Group Study, Am. J. Clin. Oncol. 37(2014) 444-449.
-
[17]
[17] J.A. Sparano, M.L. Wang, S. Martino, et al., Weekly paclitaxel in the adjuvant treatment of breast cancer, N. Engl. J. Med. 358(2008) 1663-1671.
-
[18]
[18] S. Kumar, H. Mahdi, C. Bryant, et al., Clinical trials and progress with paclitaxel in ovarian cancer, Int. J. Women's Health 2(2010) 411-427.
-
[19]
[19] G.R. Blumenschein Jr., F. Kabbinavar, H. Menon, et al., A phase II, multicenter, open-label randomized study of motesanib or bevacizumab in combination with paclitaxel and carboplatin for advanced nonsquamous non-small-cell lung cancer, Ann. Oncol. 22(2011) 2057-2067.
-
[20]
[20] H.H. Wilke, K. Muro, E. Van Cutsem, et al., Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW):a doubleblind, randomised phase 3 trial, Lancet Oncol. 15(2014) 1224-1235.
-
[21]
[21] A.E. Sosa, J.J. Grau, L. Feliz, et al., Outcome of patients treated with palliative weekly paclitaxel plus cetuximab in recurrent head and neck cancer after failure of platinum-based therapy, Eur. Arch. Otorhinolaryngol. 271(2014) 373-378.
-
[22]
[22] J.J. Grau, M. Caballero, E. Verger, M. Monzo, J. Blanch, Weekly paclitaxel for platinresistant stage IV head and neck cancer patients, Acta Otolaryngol. 129(2009) 1294-1299.
-
[23]
[23] S.H. Tseng, M.S. Bobola, M.S. Berger, J.R. Silber, Characterization of paclitaxel (Taxol) sensitivity in human glioma- and medulloblastoma-derived cell lines, Neuro Oncol. 1(1999) 101-108.
-
[24]
[24] A. Goel, B.B. Aggarwal, Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs, Nutr. Cancer 62(2010) 919-930.
-
[25]
[25] A.R. Dehdashti, M.E. Hegi, L. Regli, A. Pica, R. Stupp, New trends in the medical management of glioblastoma multiforme:the role of temozolomide chemotherapy, Neurosurg. Focus 20(2006) E6.
-
[26]
[26] J.L. Villano, T.E. Seery, L.R. Bressler, Temozolomide in malignant gliomas:current use and future targets, Cancer Chemother. Pharmacol. 64(2009) 647-655.
-
[27]
[27] M.-S. Tang, J.B. Zheng, M.F. Denissenko, G.P. Pfeifer, Y. Zheng, Use of UvrABC nuclease to quantify benzo[a]pyrene diol epoxide-DNA adduct formation at methylated versus unmethylated CpG sites in the p53 gene, Carcinogenesis 20(1999) 1085-1089.
-
[28]
[28] Q.S. Chen, J. Wu, Y.D. Zhang, J.M. Lin, Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry, Anal. Chem. 84(2012) 1695-1701.
-
[29]
[29] J. Zhang, J. Wu, H.F. Li, Q.S. Chen, J.M. Lin, An in vitro liver model on microfluidic device for analysis of capecitabine metabolite using mass spectrometer as detector, Biosens. Bioelectron. 68(2015) 322-328.
-
[30]
[30] J. Wu, Q.S. Chen, W. Liu, J.M. Lin, A simple and versatile microfluidic cell density gradient generator for quantum dot cytotoxicity assay, Lab Chip 13(2013) 1948-1954.
-
[31]
[31] R.Z. Ning, S.Q. Wang, J. Wu, F. Wang, J.M. Lin, ZnO nanowire arrays exhibit cytotoxic distinction to cancer cells with different surface charge density:cytotoxicity is charge-dependent, Small 10(2014) 4113-4117.
-
[32]
[32] M.A. Kang, E.-Y. So, A.L. Simons, D.R. Spitz, T. Ouchi, DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway, Cell Death Dis. 3(2012) e249.
-
[33]
[33] A.A. Alfadda, R.M. Sallam, Reactive oxygen species in health and disease, J. Biomed. Biotechnol. 2012(2012) 936486.
-
[34]
[34] T. Finkel, Signal transduction by reactive oxygen species, J. Cell Biol. 194(2011) 7-15.
-
[35]
[35] E. Laborde, Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death, Cell Death Differ. 17(2010) 1373-1380.
-
[36]
[36] M.L. Circu, T.Y. Aw, Glutathione and modulation of cell apoptosis, BBA-Mol. Cell Res. 1823(2012) 1767-1777.
-
[37]
[37] K. Aquilano, S. Baldelli, M.R. Ciriolo, Glutathione:new roles in redox signaling for an old antioxidant, Front. Pharmacol. 5(2014) 196.
-
[38]
[38] M.J. Morgan, Z.G. Liu, Crosstalk of reactive oxygen species and NF-kB signaling, Cell Res. 21(2011) 103-115.
-
[39]
[39] T. Hagen, Oxygen versus reactive oxygen in the regulation of HIF-1a:the balance tips, Biochem. Res. Int. 2012(2012) 436981.
-
[40]
[40] T. Maraldi, C. Prata, C. Caliceti, et al., VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis, Int. J. Oncol. 36(2010) 1581-1589.
-
[41]
[41] J. Chen, R.M. McKay, L.F. Parada, Malignant glioma:lessons from genomics, mouse models, and stem cells, Cell 149(2012) 36-47.
-
[1]
-
-
-
[1]
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
-
[2]
Lin Li , Bingjun Sun , Jin Sun , Lin Chen , Zhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538
-
[3]
Jiechen Liu , Xiaoguang Li , Ruiyang Xia , Yuqi Wang , Fenghe Zhang , Yongzhi Pang , Qing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619
-
[4]
Guo-Ping Yin , Ya-Juan Li , Li Zhang , Ling-Gao Zeng , Xue-Mei Liu , Chang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035
-
[5]
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
-
[6]
Jisheng Liu , Junli Chen , Xifeng Zhang , Yin Wu , Xin Qi , Jie Wang , Xiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779
-
[7]
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
-
[8]
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
-
[9]
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882
-
[10]
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
-
[11]
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
-
[12]
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
-
[13]
Yanjing Li , Jiayin Li , Yuqi Chang , Yunfeng Lin , Lei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414
-
[14]
Ying Gao , Rong Zhou , Qiwen Wang , Shaolong Qi , Yuanyuan Lv , Shuang Liu , Jie Shen , Guocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521
-
[15]
Yuanzheng Wang , Chen Zhang , Shuyan Han , Xiaoli Kong , Changyun Quan , Jun Wu , Wei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578
-
[16]
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
-
[17]
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
-
[18]
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
-
[19]
Huan Yao , Jian Qin , Yan-Fang Wang , Song-Meng Wang , Liu-Huan Yi , Shi-Yao Li , Fangfang Du , Liu-Pan Yang , Li-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154
-
[20]
Xiaoshuai Wu , Bailei Wang , Yichen Li , Xiaoxuan Guan , Mingjing Yin , Wenquan Lv , Yin Chen , Fei Lu , Tao Qin , Huyang Gao , Weiqian Jin , Yifu Huang , Cuiping Li , Ming Gao , Junyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(820)
- HTML views(30)