Citation:
Cai-Hou Lin, Xue-Xia Lin, Ling Lin, Jun-Ming Wang, Zhi-Xiong Lin, Jin-Ming Lin. Development of LC-MS method for analysis of paclitaxel-inhibited growth and enhanced therapeutic response in human glioblastoma cells[J]. Chinese Chemical Letters,
;2015, 26(10): 1225-1230.
doi:
10.1016/j.cclet.2015.03.007
-
Glioma stem cells are considered responsible for drug resistance and glioma relapse resulting in poor prognosis in glioblastomamultiforme. SU3 glioma cell is a highly invasive glioma stemcell line from the patients with glioblastoma multifrome. It is of great significance to study the efficacy and molecular mechanism for anticancer drug effects on SU3 glioma cells. In this work, we develop a liquid chromatography-mass spectrometry (LC-MS) method for direct analysis of the role of drugs (paclitaxel) on SU3 glioma cells at themolecular level. Weuse the specific fluorescence dyes to evaluate cell viability, the levels of ROS and GSH when the cells were treated with drugs. In addition, the LC-MS platform was successfully employed to detect the amount of 6-O-methylguanine, demonstrating that it is effective to induce cell apoptosis and enhance the cytotoxic response of SU3 glioma cells. The analytical linear equals are Y=9.49×105X+2.42×104 for 6-O-methylguanine (R2=0.9998) and Y=4.72×104X+2.21×103(R2=0.9996) for 7-methylguanine. Thus, the combination of cell-specific fluorescence dyes and LC-MS method enables us to reveal the molecular mechanism of paclitaxel-inhibited growth and enhanced therapeutic response in the chemotherapy for glioma multiforme.
-
Keywords:
- LC-MS,
- Drug analysis,
- SU3 glioma cell,
- Paclitaxel,
- Cell cycle arrest,
- ROS assay
-
-
-
[1]
[1] D.N. Louis, H. Ohgaki, O.D. Wiestler, et al., The 2007WHOclassification of tumours of the central nervous system, Acta Neuropathol. 114(2007) 97-109.
-
[2]
[2] B. Auffinger, A.L. Tobias, Y. Han, et al., Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy, Cell Death Differ. 21(2014) 1119-1131.
-
[3]
[3] E.K. Nduom, C.G. Hadjipanayis, E.G. Van Meir, Glioblastoma cancer stem-like cells:implications for pathogenesis and treatment, Cancer J. 18(2012) 100-106.
-
[4]
[4] S.D. Bao, Q.L. Wu, R.E. McLendon, et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature 444(2006) 756-760.
-
[5]
[5] J. Chen, Y.J. Li, T.S. Yu, et al., A restricted cell population propagates glioblastoma growth after chemotherapy, Nature 488(2012) 522-526.
-
[6]
[6] D. Beier, J.B. Schulz, C.P. Beier, Chemoresistance of glioblastoma cancer stem cells-much more complex than expected, Mol. Cancer 10(2011) 128.
-
[7]
[7] Y. Wan, X.F. Fei, Z.M. Wang, et al., Expression of miR-125b in the new, highly invasive glioma stem cell and progenitor cell line SU3, Chin. J. Cancer 31(2012) 207-214.
-
[8]
[8] S.M. Chang, P. Theodosopoulos, K. Lamborn, et al., Temozolomide in the treatment of recurrent malignant glioma, Cancer 100(2004) 605-611.
-
[9]
[9] D.T.M. Chan, W.S. Poon, Y.L. Chan, H.K. Ng, Temozolomide in the treatment of recurrent malignant glioma in Chinese patients, Hong Kong Med. J. 11(2005) 452-456.
-
[10]
[10] H.S. Friedman, T. Kerby, H. Calvert, Temozolomide and treatment of malignant glioma, Clin. Cancer Res. 6(2000) 2585-2597.
-
[11]
[11] M. Lacroix, D. Abi-Said, D.R. Fourney, et al., A multivariate analysis of 416 patients with glioblastoma multiforme:prognosis, extent of resection, and survival, J. Neurosurg. 95(2001) 190-198.
-
[12]
[12] X.Y. Ma, Y.F. Lv, J. Liu, et al., Survival analysis of 205 patients with glioblastoma multiforme:clinical characteristics, treatment and prognosis in China, J. Clin. Neurosci. 16(2009) 1595-1598.
-
[13]
[13] J.-F. Mineo, A. Bordron, M. Baroncini, et al., Prognosis factors of survival time in patients with glioblastoma multiforme:a multivariate analysis of 340 patients, Acta Neurochir. 149(2007) 245-253.
-
[14]
[14] Z.N. Demidenko, S. Kalurupalle, C. Hanko, et al.,Mechanism of G1-like arrest by low concentrations of paclitaxel:next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis, Oncogene 27(2008) 4402-4410.
-
[15]
[15] A. Thakur, N. Joshi, T. Shanmugam, R. Banerjee, Proapoptotic miltefosine nanovesicles show synergism with paclitaxel:implications for glioblastoma multiforme therapy, Cancer Lett. 334(2013) 274-283.
-
[16]
[16] S. Jeyapalan, J. Boxerman, J. Donahue, et al., Paclitaxel poliglumex, temozolomide, and radiation for newly diagnosed high-grade glioma:a Brown University Oncology Group Study, Am. J. Clin. Oncol. 37(2014) 444-449.
-
[17]
[17] J.A. Sparano, M.L. Wang, S. Martino, et al., Weekly paclitaxel in the adjuvant treatment of breast cancer, N. Engl. J. Med. 358(2008) 1663-1671.
-
[18]
[18] S. Kumar, H. Mahdi, C. Bryant, et al., Clinical trials and progress with paclitaxel in ovarian cancer, Int. J. Women's Health 2(2010) 411-427.
-
[19]
[19] G.R. Blumenschein Jr., F. Kabbinavar, H. Menon, et al., A phase II, multicenter, open-label randomized study of motesanib or bevacizumab in combination with paclitaxel and carboplatin for advanced nonsquamous non-small-cell lung cancer, Ann. Oncol. 22(2011) 2057-2067.
-
[20]
[20] H.H. Wilke, K. Muro, E. Van Cutsem, et al., Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW):a doubleblind, randomised phase 3 trial, Lancet Oncol. 15(2014) 1224-1235.
-
[21]
[21] A.E. Sosa, J.J. Grau, L. Feliz, et al., Outcome of patients treated with palliative weekly paclitaxel plus cetuximab in recurrent head and neck cancer after failure of platinum-based therapy, Eur. Arch. Otorhinolaryngol. 271(2014) 373-378.
-
[22]
[22] J.J. Grau, M. Caballero, E. Verger, M. Monzo, J. Blanch, Weekly paclitaxel for platinresistant stage IV head and neck cancer patients, Acta Otolaryngol. 129(2009) 1294-1299.
-
[23]
[23] S.H. Tseng, M.S. Bobola, M.S. Berger, J.R. Silber, Characterization of paclitaxel (Taxol) sensitivity in human glioma- and medulloblastoma-derived cell lines, Neuro Oncol. 1(1999) 101-108.
-
[24]
[24] A. Goel, B.B. Aggarwal, Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs, Nutr. Cancer 62(2010) 919-930.
-
[25]
[25] A.R. Dehdashti, M.E. Hegi, L. Regli, A. Pica, R. Stupp, New trends in the medical management of glioblastoma multiforme:the role of temozolomide chemotherapy, Neurosurg. Focus 20(2006) E6.
-
[26]
[26] J.L. Villano, T.E. Seery, L.R. Bressler, Temozolomide in malignant gliomas:current use and future targets, Cancer Chemother. Pharmacol. 64(2009) 647-655.
-
[27]
[27] M.-S. Tang, J.B. Zheng, M.F. Denissenko, G.P. Pfeifer, Y. Zheng, Use of UvrABC nuclease to quantify benzo[a]pyrene diol epoxide-DNA adduct formation at methylated versus unmethylated CpG sites in the p53 gene, Carcinogenesis 20(1999) 1085-1089.
-
[28]
[28] Q.S. Chen, J. Wu, Y.D. Zhang, J.M. Lin, Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry, Anal. Chem. 84(2012) 1695-1701.
-
[29]
[29] J. Zhang, J. Wu, H.F. Li, Q.S. Chen, J.M. Lin, An in vitro liver model on microfluidic device for analysis of capecitabine metabolite using mass spectrometer as detector, Biosens. Bioelectron. 68(2015) 322-328.
-
[30]
[30] J. Wu, Q.S. Chen, W. Liu, J.M. Lin, A simple and versatile microfluidic cell density gradient generator for quantum dot cytotoxicity assay, Lab Chip 13(2013) 1948-1954.
-
[31]
[31] R.Z. Ning, S.Q. Wang, J. Wu, F. Wang, J.M. Lin, ZnO nanowire arrays exhibit cytotoxic distinction to cancer cells with different surface charge density:cytotoxicity is charge-dependent, Small 10(2014) 4113-4117.
-
[32]
[32] M.A. Kang, E.-Y. So, A.L. Simons, D.R. Spitz, T. Ouchi, DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway, Cell Death Dis. 3(2012) e249.
-
[33]
[33] A.A. Alfadda, R.M. Sallam, Reactive oxygen species in health and disease, J. Biomed. Biotechnol. 2012(2012) 936486.
-
[34]
[34] T. Finkel, Signal transduction by reactive oxygen species, J. Cell Biol. 194(2011) 7-15.
-
[35]
[35] E. Laborde, Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death, Cell Death Differ. 17(2010) 1373-1380.
-
[36]
[36] M.L. Circu, T.Y. Aw, Glutathione and modulation of cell apoptosis, BBA-Mol. Cell Res. 1823(2012) 1767-1777.
-
[37]
[37] K. Aquilano, S. Baldelli, M.R. Ciriolo, Glutathione:new roles in redox signaling for an old antioxidant, Front. Pharmacol. 5(2014) 196.
-
[38]
[38] M.J. Morgan, Z.G. Liu, Crosstalk of reactive oxygen species and NF-kB signaling, Cell Res. 21(2011) 103-115.
-
[39]
[39] T. Hagen, Oxygen versus reactive oxygen in the regulation of HIF-1a:the balance tips, Biochem. Res. Int. 2012(2012) 436981.
-
[40]
[40] T. Maraldi, C. Prata, C. Caliceti, et al., VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis, Int. J. Oncol. 36(2010) 1581-1589.
-
[41]
[41] J. Chen, R.M. McKay, L.F. Parada, Malignant glioma:lessons from genomics, mouse models, and stem cells, Cell 149(2012) 36-47.
-
[1]
-
-
-
[1]
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
-
[2]
Wenfeng Zang , Yixin Sun , Jingyi Zhang , Yanzhong Hao , Qianhui Jin , Hongying Xiao , Zuo Zhang , Xianbao Shi , Jin Sun , Zhonggui He , Cong Luo , Bingjun Sun . Two-tailed modification module tuned steric-hindrance effect enabling high therapeutic efficacy of paclitaxel prodrug nanoassemblies. Chinese Chemical Letters, 2025, 36(5): 110230-. doi: 10.1016/j.cclet.2024.110230
-
[3]
Chao Liu , Liming Gong , Yanhong Liu , Shuangqing Wang , Hao Wu , Liqing Chen , Mingji Jin , Zhonggao Gao , Wei Huang . Lipoic acid-locked reduction-responsive core-cross-linked micelles delivering paclitaxel for triple-negative breast cancer treatment. Chinese Chemical Letters, 2025, 36(8): 110570-. doi: 10.1016/j.cclet.2024.110570
-
[4]
Gaowa Xing , Yuxuan Li , Hongren Yao , Qiang Zhang , Zengnan Wu , Caihou Lin , Jin-Ming Lin . Tryptophan accumulation and inflammation of glioblastoma cells in a multicomponent microchip for gut-brain-axis simulation. Chinese Chemical Letters, 2025, 36(12): 111035-. doi: 10.1016/j.cclet.2025.111035
-
[5]
Lin Li , Bingjun Sun , Jin Sun , Lin Chen , Zhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538
-
[6]
Zixuan Chen , Yafeng Wu , Zhaoyan Tian , Zhaohan Wang , Weiwei Liu , Songqin Liu . A reproducible hybrid membrane for in situ analysis of cell secretions with a wide size range. Chinese Chemical Letters, 2025, 36(12): 110917-. doi: 10.1016/j.cclet.2025.110917
-
[7]
Jiechen Liu , Xiaoguang Li , Ruiyang Xia , Yuqi Wang , Fenghe Zhang , Yongzhi Pang , Qing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619
-
[8]
Guo-Ping Yin , Ya-Juan Li , Li Zhang , Ling-Gao Zeng , Xue-Mei Liu , Chang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035
-
[9]
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
-
[10]
Sheng Tang , Mingyue Liao , Weihai Sun , Jihuai Wu , Jiamin Lu , Yiming Xie . Optimizing CsPbBr3 perovskite solar cell interface and performance through tetraphenylethene derivatives. Chinese Chemical Letters, 2025, 36(6): 110838-. doi: 10.1016/j.cclet.2025.110838
-
[11]
Jisheng Liu , Junli Chen , Xifeng Zhang , Yin Wu , Xin Qi , Jie Wang , Xiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779
-
[12]
Yixin Sun , Keke Yu , Xiuchun Guo , Lanlan Zong , Zhonggui He , Xiaohui Pu . Three-in-one reduction and acid-ignited micelles amplify antitumor efficacy via precise synergistic delivery of paclitaxel and naringenin. Chinese Chemical Letters, 2025, 36(6): 110393-. doi: 10.1016/j.cclet.2024.110393
-
[13]
Yuan Xiong , Lan-Hui Qin , Bei Zhao , Lei-Zhi Xu , Yu-Fan Fan , Tian Tian , Hai-Rong Zeng , Ting Liu , Jian Huang , Jian-Ming Sun , Zhen-Hao Tian , Guang-Bo Ge . Structure-based design and development of halogenated-naphthalimides as potent hCYP1B1 inhibitors for overcoming paclitaxel resistance. Chinese Chemical Letters, 2025, 36(11): 110812-. doi: 10.1016/j.cclet.2024.110812
-
[14]
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
-
[15]
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
-
[16]
Zeyang Yao , Xinru You , Xudong Wang , Yunze Kang , Liying Wang , Ziji Zhang . Stem cell-based hydrogel for the repair and regeneration of cartilage. Chinese Chemical Letters, 2025, 36(8): 110607-. doi: 10.1016/j.cclet.2024.110607
-
[17]
Yuanyi Zhou , Lili Wang , Li Chen , Qingbing Zha , Yu Meng , Mingshan Zhu . Functional inorganic nanomaterials for renal cell carcinoma treatment: Advancements and trends. Chinese Chemical Letters, 2025, 36(12): 110994-. doi: 10.1016/j.cclet.2025.110994
-
[18]
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882
-
[19]
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
-
[20]
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1271)
- HTML views(37)
Login In
DownLoad: