Citation:
John T. King, Evan J. Arthur, Derek G. Osborne, Charles L. Brooks Ⅲ, Kevin J. Kubarych. Biomolecular hydration dynamics probed with 2D-IR spectroscopy: From dilute solution to a macromolecular crowd[J]. Chinese Chemical Letters,
;2015, 26(4): 435-438.
doi:
10.1016/j.cclet.2015.03.005
-
Although it is well known that water is essential for biological function, it has been a challenge to determine how water behaves near biomacromolecular interfaces, and what role water plays in influencing the dynamics of the biochemical machinery. By adopting a vibrational labeling strategy coupled with ultrafast two-dimensional infrared (2D-IR) spectroscopy, it has recently become possible to study hydration dynamics, site specifically at the surface of proteins and model membranes. We review our recent progress in measuring hydration dynamics in contexts ranging from small-molecule solutes to biomacromolecules in dilute, viscous, and crowded environments.
-
-
-
[1]
[1] D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature 437 (2005) 640-647.
-
[2]
[2] D.G. Osborne, J.A. Dunbar, J.G. Lapping, A.M. White, K.J. Kubarych, Site-specific measurements of lipid membrane interfacial water dynamics with multidimensional infrared spectroscopy, J. Phys. Chem. B 117 (2013) 15407-15414.
-
[3]
[3] J.T. King, E.J. Arthur, C.L. Brooks, K.J. Kubarych, Site-specific hydration dynamics of globular proteins and the role of constrained water in solvent exchange with amphiphilic cosolvents, J. Phys. Chem. B 116 (2012) 5604-5611.
-
[4]
[4] J.T. King, K.J. Kubarych, Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy, J. Am. Chem. Soc. 134 (2012) 18705-18712.
-
[5]
[5] E.J. Arthur, J.T. King, K.J. Kubarych, C.L. Brooks, Heterogeneous preferential solvation of water and trifluoroethanol in homologous lysozymes, J. Phys. Chem. B 118 (2014) 8118-8127.
-
[6]
[6] J.T. King, E.J. Arthur, C.L. Brooks, K.J. Kubarych, Crowding induced collective hydration of biological macromolecules over extended distances, J. Am. Chem. Soc. 136 (2014) 188-194.
-
[7]
[7] P. Ball, Water as an active constituent in cell biology, Chem. Rev. 108 (2008) 74- 108.
-
[8]
[8] J.T. King, M.R. Ross, K.J. Kubarych, Water-assisted vibrational relaxation of a metal carbonyl complex studied with ultrafast 2D-IR, J. Phys. Chem. B 116 (2012) 3754- 3759.
-
[9]
[9] P. Hamm, M.T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, Cambridge University Press, New York, 2011.
-
[10]
[10] S. Roberts, J. Loparo, A. Tokmakoff, Characterization of spectral diffusion from two-dimensional line shapes, J. Chem. Phys. 125 (2006) 084502.
-
[11]
[11] D.G. Osborne, J.T. King, J.A. Dunbar, A.M. White, K.J. Kubarych, Ultrafast 2DIR probe of a host-guest inclusion complex: structural and dynamical constraints of nanoconfinement, J. Chem. Phys. 138 (2013) 144501.
-
[12]
[12] D.G. Osborne, K.J. Kubarych, Rapid and accurate measurement of the frequency- frequency correlation function, J. Phys. Chem. A 117 (2012) 5891-5898.
-
[13]
[13] J.T. King, M.R. Ross, K.J. Kubarych, Ultrafast alpha-like relaxation of a fragile glassforming liquid measured using two-dimensional infrared spectroscopy, Phys. Rev. Lett. 108 (2012) 157401.
-
[14]
[14] J.T. King, C.R. Baiz, K.J. Kubarych, Solvent-dependent spectral diffusion in a hydrogen bonded ‘‘Vibrational Aggregate'', J. Phys. Chem. A 114 (2010) 10590- 10604.
-
[15]
[15] J.F. Brookes, K.M. Slenkamp, M.S. Lynch, M. Khalil, Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an FeII complex revealed by 2D IR spectroscopy, J. Phys. Chem. A 117 (2013) 6234-6243.
-
[16]
[16] J. Qvist, E. Persson, C. Mattea, B. Halle, Time scales of water dynamics at biological interfaces: peptides, proteins and cells, Faraday Discuss. 141 (2009) 131-144.
-
[17]
[17] W.H. Qiu, Y.T. Kao, L.Y. Zhang, et al., Protein surface hydration mapped by sitespecific mutations, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 13979-13984.
-
[18]
[18] S.K. Pal, J. Peon, A.H. Zewail, Ultrafast surface hydration dynamics and expression of protein functionality: alpha-chymotrypsin, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 15297-15302.
-
[19]
[19] F. Sterpone, G. Stirnemann, D. Laage, Magnitude and molecular origin of water slowdown next to a protein, J. Am. Chem. Soc. 134 (2012) 4116-4119.
-
[20]
[20] A.C. Fogarty, D. Laage, Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation, J. Phys. Chem. B 118 (2014) 7715-7729.
-
[21]
[21] T. Knubovets, J.J. Osterhout, P.J. Connolly, A.M. Klibanov, Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 1262-1267.
-
[22]
[22] A.P. Minton, The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media, J. Biol. Chem. 276 (2001) 10577-10580.
-
[23]
[23] M. Sarkar, J. Lu, G.J. Pielak, Protein crowder charge and protein stability, Biochemistry 53 (2014) 1601-1606.
-
[24]
[24] S. Ebbinghaus, S.J. Kim, M. Heyden, et al., An extended dynamical hydration shell around proteins, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 20749-20752.
-
[25]
[25] V.C. Nibali, M. Havenith, New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations, J. Am. Chem. Soc. 136 (2014) 12800-12807.
-
[26]
[26] C.R. Baiz, D. Schach, A. Tokmakoff, Ultrafast 2D IR microscopy, Opt. Express 22 (2014) 18724-18735.
-
[27]
[27] T. Ando, J. Skolnick, Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 18457- 18462.
-
[28]
[28] A. Gershenson, L.M. Gierasch, Protein folding in the cell: challenges and progress, Curr. Opin. Struct. Biol. 21 (2011) 32-41.
-
[1]
-
-
-
[1]
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
-
[2]
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761
-
[3]
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
-
[4]
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
-
[5]
Mengjia Luo , Yi Qiu , Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446
-
[6]
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
-
[7]
Manyu Zhu , Fei Liang , Lie Wu , Zihao Li , Chen Wang , Shule Liu , Xiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962
-
[8]
Jianwen Zhao , Shuai Wang , Shanshan Zhao , Liwei Chen , Fangang Meng , Xuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883
-
[9]
Tiantian Long , Hongmei Luo , Jingbo Sun , Fengniu Lu , Yi Chen , Dong Xu , Zhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728
-
[10]
Wenbi Wu , Yinchu Dong , Haofan Liu , Xuebing Jiang , Li Li , Yi Zhang , Maling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260
-
[11]
Wenxuan Yang , Long Shang , Xiaomeng Liu , Sihan Zhang , Haixia Li , Zhenhua Yan , Jun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501
-
[12]
Mingqi Wang , Shixin Fa , Jiate Yu , Guoxian Zhang , Yi Yan , Qing Liu , Qiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124
-
[13]
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
-
[14]
Yan Zou , Yin-Shuang Hu , Deng-Hui Tian , Hong Wu , Xiaoshu Lv , Guangming Jiang , Yu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090
-
[15]
Xubin Qian , Lei Xu , Xu Ge , Zhun Liu , Cheng Fang , Jianbing Wang , Junfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218
-
[16]
Lingna Wang , Chenxin Tian , Ruobin Dai , Zhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356
-
[17]
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
-
[18]
Ying Gao , Rong Zhou , Qiwen Wang , Shaolong Qi , Yuanyuan Lv , Shuang Liu , Jie Shen , Guocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521
-
[19]
Yuanzheng Wang , Chen Zhang , Shuyan Han , Xiaoli Kong , Changyun Quan , Jun Wu , Wei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578
-
[20]
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(579)
- HTML views(4)