Citation: John T. King, Evan J. Arthur, Derek G. Osborne, Charles L. Brooks Ⅲ, Kevin J. Kubarych. Biomolecular hydration dynamics probed with 2D-IR spectroscopy: From dilute solution to a macromolecular crowd[J]. Chinese Chemical Letters, ;2015, 26(4): 435-438. doi: 10.1016/j.cclet.2015.03.005 shu

Biomolecular hydration dynamics probed with 2D-IR spectroscopy: From dilute solution to a macromolecular crowd

  • Corresponding author: Kevin J. Kubarych, 
  • Received Date: 26 November 2014
    Available Online: 9 January 2015

    Fund Project: This work has been supported by the National Science Foundation (No. CHE-0748501) (No. CHE-0748501) the National Institutes of Health (No. RR012255) (No. RR012255)

  • Although it is well known that water is essential for biological function, it has been a challenge to determine how water behaves near biomacromolecular interfaces, and what role water plays in influencing the dynamics of the biochemical machinery. By adopting a vibrational labeling strategy coupled with ultrafast two-dimensional infrared (2D-IR) spectroscopy, it has recently become possible to study hydration dynamics, site specifically at the surface of proteins and model membranes. We review our recent progress in measuring hydration dynamics in contexts ranging from small-molecule solutes to biomacromolecules in dilute, viscous, and crowded environments.
  • 加载中
    1. [1]

      [1] D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature 437 (2005) 640-647.

    2. [2]

      [2] D.G. Osborne, J.A. Dunbar, J.G. Lapping, A.M. White, K.J. Kubarych, Site-specific measurements of lipid membrane interfacial water dynamics with multidimensional infrared spectroscopy, J. Phys. Chem. B 117 (2013) 15407-15414.

    3. [3]

      [3] J.T. King, E.J. Arthur, C.L. Brooks, K.J. Kubarych, Site-specific hydration dynamics of globular proteins and the role of constrained water in solvent exchange with amphiphilic cosolvents, J. Phys. Chem. B 116 (2012) 5604-5611.

    4. [4]

      [4] J.T. King, K.J. Kubarych, Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy, J. Am. Chem. Soc. 134 (2012) 18705-18712.

    5. [5]

      [5] E.J. Arthur, J.T. King, K.J. Kubarych, C.L. Brooks, Heterogeneous preferential solvation of water and trifluoroethanol in homologous lysozymes, J. Phys. Chem. B 118 (2014) 8118-8127.

    6. [6]

      [6] J.T. King, E.J. Arthur, C.L. Brooks, K.J. Kubarych, Crowding induced collective hydration of biological macromolecules over extended distances, J. Am. Chem. Soc. 136 (2014) 188-194.

    7. [7]

      [7] P. Ball, Water as an active constituent in cell biology, Chem. Rev. 108 (2008) 74- 108.

    8. [8]

      [8] J.T. King, M.R. Ross, K.J. Kubarych, Water-assisted vibrational relaxation of a metal carbonyl complex studied with ultrafast 2D-IR, J. Phys. Chem. B 116 (2012) 3754- 3759.

    9. [9]

      [9] P. Hamm, M.T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, Cambridge University Press, New York, 2011.

    10. [10]

      [10] S. Roberts, J. Loparo, A. Tokmakoff, Characterization of spectral diffusion from two-dimensional line shapes, J. Chem. Phys. 125 (2006) 084502.

    11. [11]

      [11] D.G. Osborne, J.T. King, J.A. Dunbar, A.M. White, K.J. Kubarych, Ultrafast 2DIR probe of a host-guest inclusion complex: structural and dynamical constraints of nanoconfinement, J. Chem. Phys. 138 (2013) 144501.

    12. [12]

      [12] D.G. Osborne, K.J. Kubarych, Rapid and accurate measurement of the frequency- frequency correlation function, J. Phys. Chem. A 117 (2012) 5891-5898.

    13. [13]

      [13] J.T. King, M.R. Ross, K.J. Kubarych, Ultrafast alpha-like relaxation of a fragile glassforming liquid measured using two-dimensional infrared spectroscopy, Phys. Rev. Lett. 108 (2012) 157401.

    14. [14]

      [14] J.T. King, C.R. Baiz, K.J. Kubarych, Solvent-dependent spectral diffusion in a hydrogen bonded ‘‘Vibrational Aggregate'', J. Phys. Chem. A 114 (2010) 10590- 10604.

    15. [15]

      [15] J.F. Brookes, K.M. Slenkamp, M.S. Lynch, M. Khalil, Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an FeII complex revealed by 2D IR spectroscopy, J. Phys. Chem. A 117 (2013) 6234-6243.

    16. [16]

      [16] J. Qvist, E. Persson, C. Mattea, B. Halle, Time scales of water dynamics at biological interfaces: peptides, proteins and cells, Faraday Discuss. 141 (2009) 131-144.

    17. [17]

      [17] W.H. Qiu, Y.T. Kao, L.Y. Zhang, et al., Protein surface hydration mapped by sitespecific mutations, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 13979-13984.

    18. [18]

      [18] S.K. Pal, J. Peon, A.H. Zewail, Ultrafast surface hydration dynamics and expression of protein functionality: alpha-chymotrypsin, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 15297-15302.

    19. [19]

      [19] F. Sterpone, G. Stirnemann, D. Laage, Magnitude and molecular origin of water slowdown next to a protein, J. Am. Chem. Soc. 134 (2012) 4116-4119.

    20. [20]

      [20] A.C. Fogarty, D. Laage, Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation, J. Phys. Chem. B 118 (2014) 7715-7729.

    21. [21]

      [21] T. Knubovets, J.J. Osterhout, P.J. Connolly, A.M. Klibanov, Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 1262-1267.

    22. [22]

      [22] A.P. Minton, The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media, J. Biol. Chem. 276 (2001) 10577-10580.

    23. [23]

      [23] M. Sarkar, J. Lu, G.J. Pielak, Protein crowder charge and protein stability, Biochemistry 53 (2014) 1601-1606.

    24. [24]

      [24] S. Ebbinghaus, S.J. Kim, M. Heyden, et al., An extended dynamical hydration shell around proteins, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 20749-20752.

    25. [25]

      [25] V.C. Nibali, M. Havenith, New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations, J. Am. Chem. Soc. 136 (2014) 12800-12807.

    26. [26]

      [26] C.R. Baiz, D. Schach, A. Tokmakoff, Ultrafast 2D IR microscopy, Opt. Express 22 (2014) 18724-18735.

    27. [27]

      [27] T. Ando, J. Skolnick, Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 18457- 18462.

    28. [28]

      [28] A. Gershenson, L.M. Gierasch, Protein folding in the cell: challenges and progress, Curr. Opin. Struct. Biol. 21 (2011) 32-41.

  • 加载中
    1. [1]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    2. [2]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    3. [3]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    4. [4]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    5. [5]

      Aoxuan SongQinglong QiaoNing XuYiyan RuanWenhao JiaXiang WangZhaochao Xu . Super-resolution imaging of cellular pseudopodia dynamics with a target-specific blinkogenic probe. Chinese Chemical Letters, 2025, 36(8): 110643-. doi: 10.1016/j.cclet.2024.110643

    6. [6]

      Takuya TanakaRikuto NodaYuki SawatariRiki IwaiBen Zhong TangGen-ichi Konishi . Viscosity responsiveness of excited-state dynamics in aggregated-induced emission luminogens. Chinese Chemical Letters, 2025, 36(12): 111495-. doi: 10.1016/j.cclet.2025.111495

    7. [7]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    8. [8]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    9. [9]

      Zhimin SongZhe TangYu ZhangYanru ZhouXiaozheng DuanYan DuChong-Bo Ma . DNA-modulated Mo-Zn single-atom nanozymes: Insights from molecular dynamics simulations to smartphone-assisted biosensing. Chinese Chemical Letters, 2025, 36(10): 110680-. doi: 10.1016/j.cclet.2024.110680

    10. [10]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    11. [11]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    12. [12]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    13. [13]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    14. [14]

      Zixuan ChenYafeng WuZhaoyan TianZhaohan WangWeiwei LiuSongqin Liu . A reproducible hybrid membrane for in situ analysis of cell secretions with a wide size range. Chinese Chemical Letters, 2025, 36(12): 110917-. doi: 10.1016/j.cclet.2025.110917

    15. [15]

      Chenkai YangXiaoling PanWeiguang ZhaoZhiwen QiuLei HeCong WuAng LiZhengnan HuangYilin YanShengzhou LiZhuofan NanXiangqian CaoBing ShenWei Li . Intratumoral photo-controlled antigens burst release for synergistic immunotherapy by bio-membrane and organic membrane coated dual-functional nanoparticles. Chinese Chemical Letters, 2025, 36(9): 110740-. doi: 10.1016/j.cclet.2024.110740

    16. [16]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    17. [17]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    18. [18]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    19. [19]

      Yiming MaYuanbo WangFang WangSheng LuXiaoqiang Chen . Site-specific protein labeling: Recent progress. Chinese Chemical Letters, 2025, 36(8): 110546-. doi: 10.1016/j.cclet.2024.110546

    20. [20]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

Metrics
  • PDF Downloads(0)
  • Abstract views(999)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return