Citation:
Hui Joon Park, L. Jay Guo. Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells[J]. Chinese Chemical Letters,
;2015, 26(4): 419-425.
doi:
10.1016/j.cclet.2015.02.001
-
In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform plasmonic nanostructures were demonstrated.
-
-
-
[1]
[1] H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9 (2010) 205-213.
-
[2]
[2] E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions, Science 311 (2006) 189-193.
-
[3]
[3] W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (2003) 824-830.
-
[4]
[4] X.G. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique, Appl. Phys. Lett. 84 (2004) 4780-4782.
-
[5]
[5] N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science 308 (2005) 534-537.
-
[6]
[6] M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc. 99 (1977) 5215-5217.
-
[7]
[7] H.J. Park, T. Xu, J.Y. Lee, A.B. Ledbetter, L.J. Guo, Photonic color filters integrated with organic solar cells for energy harvesting, ACS Nano 5 (2011) 7055-7060.
-
[8]
[8] T.H. Reilly III, J. van de Lagemaat, R.C. Tenent, A.J. Morfa, K.L. Rowlen, Surface plasmon enhanced transparent electrodes in organic photovoltaics, Appl. Phys. Lett. 92 (2008) 243304.
-
[9]
[9] S.-W. Baek, J. Noh, C.-H. Lee, et al., Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method, Sci. Rep. 3 (2013) 1726.
-
[10]
[10] L.Y. Lu, Z.Q. Luo, T. Xu, L.P. Yu, Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells, Nano Lett. 13 (2013) 59-64.
-
[11]
[11] M.-G. Kang, T. Xu, H.J. Park, X. Luo, L.J. Guo, Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes, Adv. Mater. 22 (2010) 4378-4383.
-
[12]
[12] M.-G. Kang, H.J. Park, S.H. Ahn, T. Xu, L.J. Guo, Toward low-cost, high-efficiency, and scalable organic solar cells with transparent metal electrode and improved domain morphology, IEEE J. Sel. Top. Quantum Electron. 16 (2010) 1807-1820.
-
[13]
[13] H.J. Park, M.-G. Kang, S.H. Ahn, L.J. Guo, A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performances, Adv. Mater. 22 (2010) E247-E253.
-
[14]
[14] H.J. Park, H. Kim, J.Y. Lee, T. Lee, L.J. Guo, Optimization of polymer photovoltaic cells with bulk heterojunction layers hundreds of nanometers thick: modifying the morphology and cathode interface, Energy Environ. Sci. 6 (2013) 2203-2210.
-
[15]
[15] H.J. Park, J.Y. Lee, T. Lee, L.J. Guo, Advanced heterojunction structure of polymer photovoltaic cell generating high photocurrent with internal quantum efficiency approaching 100%, Adv. Energy Mater. 3 (2013) 1135-1142.
-
[16]
[16] P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Exciton diffusion measurements in poly(3- hexylthiophene), Adv. Mater. 20 (2008) 3516-3520.
-
[17]
[17] W.A. Luhman, R.J. Holmes, Investigation of energy transfer in organic photovoltaic cells and impact on exciton diffusion length measurements, Adv. Funct. Mater. 21 (2011) 764-771.
-
[18]
[18] M. Theander, A. Yartsev, D. Zigmantas, et al., Photoluminescence quenching at a polythiophene/C60 heterojunction, Phys. Rev. B 61 (2000) 12957-12963.
-
[19]
[19] S.S. Kim, S.I. Na, J. Jo, D.Y. Kim, Y.C. Nah, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles, Appl. Phys. Lett. 93 (2008) 073307.
-
[20]
[20] M. Iqbal, Y.I. Chung, G. Tae, An enhanced synthesis of gold nanorods by the addition of Pluronic (F-127) via a seed mediated growth process, J. Mater. Chem. 17 (2007) 335-342.
-
[21]
[21] H.A. Day, D. Bartczak, N. Fairbairn, et al., Controlling the three-dimensional morphology of nanocrystals, Cryst. Eng. Commun. 12 (2010) 4312-4316.
-
[22]
[22] F.C. Chen, J.L. Wu, C.L. Lee, et al., Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles, Appl. Phys. Lett. 95 (2009) 013305.
-
[23]
[23] J.H. Lee, J.H. Park, J.S. Kim, D.Y. Lee, K. Cho, High efficiency polymer solar cells with wet deposited plasmonic gold nanodots, Org. Electron. 10 (2009) 416-420.
-
[24]
[24] E. Stratakis, M. Barberoglou, C. Fotakis, et al., Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses, Opt. Express 17 (2009) 12650-12659.
-
[25]
[25] A.J. Morfa, K.L. Rowlen, T.H. Reilly III, M.J. Romero, J.V.D. Lagemaat, Plasmonenhanced solar energy conversion in organic bulk heterojunction photovoltaics, Appl. Phys. Lett. 92 (2008) 013504.
-
[26]
[26] C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York, USA, 1983.
-
[27]
[27] G. Spyropoulos, M. Stylianakis, E. Stratakis, E. Kymakis, Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer, Appl. Phys. Lett. 100 (2012) 213904.
-
[28]
[28] S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells, J. Appl. Phys. 101 (2007) 093105.
-
[29]
[29] M.A. Sefunc, A.K. Okyay, H.V. Demir, Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations, Opt. Express 19 (2011) 14200-14209.
-
[30]
[30] M.G. Kang, H.J. Park, S.H. Ahn, L.J. Guo, Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells, Sol. Energy Mater. Sol. Cells 94 (2010) 1179-1184.
-
[31]
[31] J.L. Wu, F.C. Chen, Y.S. Hsiao, et al., Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells, ACS Nano 5 (2011) 959-967.
-
[32]
[32] J.N. Pei, J.L. Tao, Y.H. Zhou, et al., Efficiency enhancement of polymer solar cells by incorporating a self-assembled layer of silver nanodisks, Sol. Energy Mater. Sol. Cells 95 (2011) 3281-3286.
-
[33]
[33] L.F. Qiao, D. Wang, L.J. Zuo, et al., Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres, Appl. Energy 88 (2011) 848-852.
-
[34]
[34] Y.S. Hsiao, S. Charan, F.Y. Wu, et al., Improving the light trapping efficiency of plasmonic polymer solar cells through photon management, J. Phys. Chem. C 116 (2012) 20731-20737.
-
[35]
[35] H. Choi, S.J. Ko, Y. Choi, et al., Versatile surface plasmon resonance of carbon-dotsupported silver nanoparticles in polymer optoelectronic devices, Nat. Photonics 7 (2013) 732-738.
-
[36]
[36] J. Yang, J. You, C.C. Chen, et al., Plasmonic polymer tandem solar cell, ACS Nano 5 (2011) 6210-6217.
-
[37]
[37] D.D.S. Fung, L. Qiao, W.C.H. Choy, et al., Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer, J. Mater. Chem. 21 (2011) 16349-16356.
-
[38]
[38] M. Stavytska-Barba, A.M. Kelley, Surface-enhanced Raman study of the interaction of PEDOT:PSS with plasmonically active nanoparticles, J. Phys. Chem. C 114 (2010) 6822-6830.
-
[39]
[39] D.H. Wang, D.Y. Kim, K.W. Choi, et al., Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles, Angew. Chem. Int. Ed. 50 (2011) 5519-5523.
-
[40]
[40] D.H. Wang, K.H. Park, J.H. Seo, et al., Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters, Adv. Energy Mater. 1 (2011) 766-770.
-
[41]
[41] C.H. Kim, S.H. Cha, S.C. Kim, et al., Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications, ACS Nano 5 (2011) 3319- 3325.
-
[42]
[42] D.H. Wang, J.K. Kim, G.-H. Lim, et al., Enhanced light harvesting in bulk heterojunction photovoltaic devices with shape-controlled Ag nanomaterials: Ag nanoparticles versus Ag nanoplates, RSC Adv. 2 (2012) 7268-7272.
-
[43]
[43] K. Topp, H. Borchert, F. Johnen, et al., Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells, J. Phys. Chem. A 114 (2010) 3981-3989.
-
[44]
[44] M.D. Brown, T. Suteewong, R.S.S. Kumar, et al., Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles, Nano Lett. 11 (2010) 438-445.
-
[45]
[45] H.C. Liao, C.S. Tsao, T.H. Lin, et al., Nanoparticle-tuned self-organization of a bulk heterojunction hybrid solar cell with enhanced performance, ACS Nano 6 (2012) 1657-1666.
-
[46]
[46] B. Paci, G.D. Spyropoulos, A. Generosi, et al., Enhanced structural stability and performance durability of bulk heterojunction photovoltaic devices incorporating metallic nanoparticles, Adv. Funct. Mater. 21 (2011) 3573-3582.
-
[47]
[47] B. Paci, A. Generosi, V.R. Albertini, et al., Enhancement of photo/thermal stability of organic bulk heterojunction photovoltaic devices via gold nanoparticles doping of the active layer, Nanoscale 4 (2012) 7452-7459.
-
[48]
[48] B.D. Lucas, J. Kim, C. Chin, L.J. Guo, Nanoimprint lithography based approach for the fabrication of large-area, uniformly-oriented plasmonic arrays, Adv. Mater. 20 (2008) 1129-1134.
-
[49]
[49] C. Pina-Hernandez, J.S. Kim, L.J. Guo, P.F. Fu, High-throughput and etch-selective nanoimprinting and stamping based on fast-thermal-curing poly(dimethylsiloxane) s, Adv. Mater. 19 (2007) 1222-1227.
-
[50]
[50] H.J. Park, M.G. Kang, L.J. Guo, Large area high density sub-20 nm SiO2 nanostructures fabricated by block copolymer template for nanoimprint lithography, ACS Nano 3 (2009) 2601-2608.
-
[51]
[51] K. Tvingstedt, N.K. Persson, O. Inganas, A. Rahachou, I.V. Zozoulenko, Surface plasmon increase absorption in polymer photovoltaic cells, Appl. Phys. Lett. 91 (2007) 113514.
-
[52]
[52] C. Min, J. Li, G. Veronis, et al., Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings, Appl. Phys. Lett. 96 (2010) 133302.
-
[1]
-
-
-
[1]
Shuang Liang , Jianjun Yao , Dan Liu , Mengli Zhou , Yong Cui , Zhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856
-
[2]
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
-
[3]
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
-
[4]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[5]
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
-
[6]
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
-
[7]
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
-
[8]
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
-
[9]
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
-
[10]
Xueqi Zhang , Han Gao , Jianan Xu , Min Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148
-
[11]
Yiming Yang , Lichao Sun , Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467
-
[12]
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
-
[13]
Lijun Mao , Shuo Li , Xin Zhang , Zhan-Ting Li , Da Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363
-
[14]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[15]
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
-
[16]
Tiantian Man , Fulin Zhu , Yaqi Huang , Yuhao Piao , Yan Su , Shengyuan Deng , Ying Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036
-
[17]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[18]
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
-
[19]
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
-
[20]
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(602)
- HTML views(4)