Citation: Lan Chen, Yun-Chang Zhang, Wei-Kun Wang, Jia Tian, Liang Zhang, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Conjugated radical cation dimerization-driven generation of supramolecular architectures[J]. Chinese Chemical Letters, ;2015, 26(7): 811-816. doi: 10.1016/j.cclet.2015.01.036 shu

Conjugated radical cation dimerization-driven generation of supramolecular architectures

  • Corresponding author: Dan-Wei Zhang,  Zhan-Ting Li, 
  • Received Date: 27 December 2014
    Available Online: 8 January 2015

    Fund Project: the Science and Technology Commission of Shanghai Municipality (No. 13M1400200) (No. 2013CB834501)

  • This paper summarizes the recent advance in utilizing conjugated radical cation dimerization (CRCD) for constructing new unimolecular, such as foldamers, and supramolecular ordered structures, such as three-dimensional supramolecular polymers and two-dimensional supramolecular organic framework. Particularly, the stacking or dimerization of tetrathiafulvalene and 4,4'-dipyridium subunits has been highlighted, and the approaches for enhancing the stability of their radical cation dimers have been discussed.
  • 加载中
    1. [1]

      [1] (a) I. Garcia-Yoldi, J.S. Miller, J.J. Novoa, Theoretical study of the electronic structure of [tetrathiafulvalene]22+ dimers and their long, intradimer multicenter bonding in solution and the solid state, J. Phys. Chem. A 113 (2009) 484–492; (b) W. Lu, Q.Y. Zhu, J. Dai, et al., Tetrathiafulvalene-diamide salts with S…S and C…C stacked radical couples, Cryst. Growth Des. 7 (2007) 652–657; (c) F. Gao, F.F. Zhu, X.Y. Wang, et al., Stabilizing radical cation and dication of a tetrathiafulvalene derivative by a weakly coordinating anion, Inorg. Chem. 53 (2014) 5321–5327; (d) B.Q. Wang, F.F. Wang, F. Ma, et al., Intermolecular covalent interaction: 20- center-2-electron covalent p/p bonding in tetrathiafulvalene radical-cation dimer TTF·+–TTF·+, J. Comput. Methods Sci. Eng. 10 (2010) 357–366; (e) D.W. Zhang, J. Tian, L. Chen, L. Zhang, Z.T. Li, Dimerization of conjugated radical cations: an emerging non-covalent interaction for self-assembly, Chem. Asian J. 10 (2015) 56–68.

    2. [2]

      [2] E. Kosower, J. Cotter, Stable free radicals. II. The reduction of 1-methyl-4-cyanopyridinium ion to methylviologen cation radical, J. Am. Chem. Soc. 86 (1964) 5524–5527.

    3. [3]

      [3] R. Bozio, I. Zanon, A. Girlando, C. Pecile, Vibrational spectroscopy of molecular constituents of one-dimensional organic conductors. Tetrathiofulvalene (TTF), TTF+, and (TTF+)2 dimer, J. Chem. Phys. 71 (1979) 2282–2293.

    4. [4]

      [4] (a) A.Y. Ziganshina, Y.H. Ko, W.S. Jeon, K. Kim, Stable π-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril, Chem. Commun. (2004) 806–807; (b) Y.M. Zhang, Y. Chen, R.J. Zhuang, Y. Liu, Construction and radical cation stabilization of a supramolecular dyad by tetrathiafulvalene-modified b-cyclodextrin and cucurbit[7]uril, Supramol. Chem. 23 (2011) 372–378.

    5. [5]

      [5] C.A. Christensen, L.M. Goldenberg, M.R. Bryce, J. Becher, Synthesis and electrochemistry of a tetrathiafulvalene (TTF)21-glycol dendrimer: intradendrimer aggregation of TTF cation radicals, Chem. Commun. (1998) 509–510.

    6. [6]

      [6] C. Wang, S.M. Dyar, D. Cao, et al., Tetrathiafulvalene hetero radical cation dimerization in a redox-active [2]catenane, J. Am. Chem. Soc. 134 (2012) 19136–19145.

    7. [7]

      [7] H. Spanggaard, J. Prehn, M.B. Nielsen, et al., Multiple-bridged bis-tetrathiafulvalenes: new synthetic protocols and spectroelectrochemical investigations, J. Am. Chem. Soc. 122 (2000) 9486–9494.

    8. [8]

      [8] M. Hasegawa, K. Daigoku, K. Hashimoto, H. Nishikawa, M. Iyoda, Face-to-face dimeric tetrathiafulvalenes and their cation radical and dication species as models of mixed valence and p-dimer states, Bull. Chem. Soc. Jpn. 85 (2012) 51–60.

    9. [9]

      [9] C. Li, X. Zhao, X. Gao, Q. Wang, Z. Li, Foldamer-derived preorganized bi- and trizinc porphyrin tweezers for a pentafluorobenzene-bearing pyridine guest: the binding pattern study, Chin. J. Chem. 31 (2013) 582–588.

    10. [10]

      [10] Z. Shi, Y. Song, F. Lu, et al., Evaluation on the stability of the intramolecular N– H…OMe hydrogen bonds of aromatic amide foldamers, Huaxue Xuebao 71 (2013) 51–61.

    11. [11]

      [11] W.K. Wang, Y.Y. Chen, H. Wang, et al., Tetrathiafulvalene-based macrocycles formed by radical cation dimerization: the role of intramolecular hydrogen bonding and solvent, Chem. Asian J. 9 (2014) 1039–1044.

    12. [12]

      [12] K.I. Nakamura, T. Hashimoto, T. Shirahata, et al., Synthesis and properties of new trimeric and tetrameric tetrathiafulvalenes with alternate links, Chem. Lett. 40 (2011) 883–885.

    13. [13]

      [13] E. Gomar-Nadal, L. Mugica, J. Vidal-Gancedo, et al., Synthesis and doping of a multifunctional tetrathiafulvalene-substituted poly(isocyanide), Macromolecules 40 (2007) 7521–7531.

    14. [14]

      [14] R. Kannappan, C. Bucher, E. Saint-Aman, et al., Viologen-based redox-switchable anion-binding receptors, New J. Chem. 34 (2010) 1373–1386.

    15. [15]

      [15] A. Iordache, M. Oltean, A. Milet, et al., Redox control of rotary motions in ferrocene-based elemental ball bearings, J. Am. Chem. Soc. 134 (2012) 2653– 2671.

    16. [16]

      [16] M.R. Geraskina, A.T. Buck, A.H. Winter, An organic spin crossover material in water from a covalently linked radical dyad, J. Org. Chem. 79 (2014) 7723–7727.

    17. [17]

      [17] L.C. Cao, M. Mou, Y. Wang, Hyperbranched and viologen-functionalized polyglycerols: preparation, photo- and electrochromic performance, J. Mater. Chem. 19 (2009) 3412–3418.

    18. [18]

      [18] K. Nchimi-Nono, P. Dalvand, K. Wadhwa, et al., Radical-cation dimerization overwhelms inclusion in [n]pseudorotaxanes, Chem. Eur. J. 20 (2014) 7334–7344.

    19. [19]

      [19] L. Chen, H. Wang, D.W. Zhang, Y. Zhou, Z.T. Li, Quadruple switching on pleated foldamers of tetrathiafulvalene-bipyridinium-alternating dynamic covalent polymers, Angew. Chem. Int. Ed. (2015), http://dx.doi.org/10.1002/anie.201410757.

    20. [20]

      [20] J.M. Spruell, Molecular recognition and switching via radical dimerization, Pure Appl. Chem. 82 (2010) 2281–2294.

    21. [21]

      [21] S.V. Rosokha, J.K. Kochi, Molecular and electronic structures of the long-bonded π-dimers of tetrathiafulvalene cation-radical in intermolecular electron transfer and in (solid-state) conductivity, J. Am. Chem. Soc. 129 (2007) 828–838.

    22. [22]

      [22] P.T. Chiang, N.C. Chen, C.C. Lai, S.H. Chiu, Direct observation of mixed-valence and radical cation dimer states of tetrathiafulvalene in solution at room temperature: association and dissociation of molecular clip dimers under oxidative control, Chem. Eur. J. 14 (2008) 6546–6552.

    23. [23]

      [23] J. Tian, Y.D. Ding, T.Y. Zhou, et al., Self-assembly of three-dimensional supramolecular polymers through cooperative tetrathiafulvalene radical cation dimerization, Chem. Eur. J. 20 (2014) 575–584.

    24. [24]

      [24] C. Zhou, J. Tian, J.L. Wang, et al., A three-dimensional water-soluble supramolecular organic framework stabilized by the dimerization of viologen radical cation, Polym. Chem. 5 (2014) 341–345.

    25. [25]

      [25] L. Zhang, T.Y. Zhou, J. Tian, et al., Two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril, Polym. Chem. 5 (2014) 4715–4721.

    26. [26]

      [26] Y.C. Zhang, Y. Zhou, Z.T. Li, D.W. Zhang, Stacking of hydrazone-bridged linear tetrathiafulvalene radical cations, Tetrahedron 71 (2015) 605–609.

    27. [27]

      [27] Y. Wang, M. Frasconi, W.G. Liu, et al., Folding of oligoviologens induced by radical–radical interactions, J. Am. Chem. Soc. 137 (2015), http://dx.doi.org/10.1021/ja5111305.

    28. [28]

      [28] L. Chen, S.C. Zhang, H. Wang, et al., Three-dimensional supramolecular polymers driven by rigid tetrahedral building blocks through tetrathiafulvalene radical cation dimerization, Tetrahedron 70 (2014) 4778–4783.

    29. [29]

      [29] T.Q. Wan, Z.T. Li, From supramolecular polymers to supramolecular organic frameworks: engineering the periodicity of solution-phase self-assembled architectures, Imaging Sci. Photochem. 33 (2015) 3–14.

    30. [30]

      [30] (a) M. Sun, H. Zhang, X. Hu, B. Liu, Y. Liu, Hyperbranched supramolecular polymer of tris(permethyl-β-cyclodextrin)s with porphyrins: characterization and magnetic resonance imaging, Chin. J. Chem. 32 (2014) 771–776; (b) L.H. Wang, Z.J. Zhang, H.Y. Zhang, H.L. Wu, Y. Liu, A twin-axial[5]pseudorotaxane based on cucurbit[8]uril and a-cyclodextrin, Chin. Chem. Lett. 24 (2013) 949–952.

    31. [31]

      [31] F. Sakai, Z.W. Ji, J.H. Liu, G.S. Chen, M. Jiang, A novel supramolecular graft copolymer via cucurbit[8]uril-based complexation and its self-assembly, Chin. Chem. Lett. 24 (2013) 568–572.

    32. [32]

      [32] Z.G. Tao, T.G. Zhan, T.Y. Zhou, X. Zhao, Z.T. Li, Synthesis, properties, and selfassembly of 2,3-bis(n-octyl)hexaazatriphenylene, Chin. Chem. Lett. 24 (2013) 453–456.

  • 加载中
    1. [1]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    2. [2]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    3. [3]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    4. [4]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    5. [5]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    6. [6]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    7. [7]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    8. [8]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    9. [9]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    10. [10]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    11. [11]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    12. [12]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    13. [13]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    14. [14]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    15. [15]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    16. [16]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    17. [17]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    18. [18]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    19. [19]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    20. [20]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

Metrics
  • PDF Downloads(0)
  • Abstract views(667)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return