Citation:
Farid Moeinpour, Amir Khojastehnezhad. Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles as an effi cient and green catalyst for the synthesis of pyrano[2,3-c]pyrazoles[J]. Chinese Chemical Letters,
;2015, 26(5): 575-579.
doi:
10.1016/j.cclet.2015.01.033
-
Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@Hap-Cs2CO3) was found to be magnetically separable, highly efficient, green and recyclable heterogeneous catalyst. The synthesized nanocatalyst has been characterized with several methods (FT-IR, SEM, TEM, XRD and XRF) and these analyzes confirmed which the cesium carbonate is well supported to catalyst surface. After full characterization, its catalytic activity was investigated in the synthesis of pyranopyrazole derivatives and the reactions were carried out at room temperature in 50:50 water/ethanol with excellent yields (88-95%). More importantly, the Ni0.5Zn0.5Fe2O4@Hap-Cs2CO3 was easily separated from the reaction mixture by external magnetic field and efficiently reused at least six runs without any loss of its catalytic activity. Thus, the developed nanomagnetic base catalyst is potentially useful for the green and economic production of organic compounds.
-
-
-
[1]
[1] C.W. Lim, I.S. Lee, Magnetically recyclable nanocatalyst systems for the organic reactions, Nano Today 5 (2010) 412-434.
-
[2]
[2] S. Shylesh, V. Schü nemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.
-
[3]
[3] P. Riente, C. Mendoza, M.A. Pericás, Functionalization of Fe3O4 magnetic nanoparticles for organocatalytic Michael reactions, J. Mater. Chem. 21 (2011) 7350-7355.
-
[4]
[4] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc. 128 (2006) 5279-5282.
-
[5]
[5] G.L. Hornyak, H.F. Tibbals, J. Dutta, J.J. Moore, Introduction to Nanoscience and Nanotechnology, CRC Press, USA, 2008.
-
[6]
[6] H.J. Kim, J.E. Ahn, S. Haam, et al., Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting, J. Mater. Chem. 16 (2006) 1617-1621.
-
[7]
[7] H.M. Fan, J.B. Yi, Y. Yang, et al., Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications, ACS Nano 3 (2009) 2798-2808.
-
[8]
[8] S.A. Shah, M. Hashmi, S. Alam, A. Shamim, Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer, J. Magn. Magn. Mater. 322 (2010) 375-381.
-
[9]
[9] A. Chaudhuri, M. Mandal, K. Mandal, Preparation and study of NiFe2O4/SiO2 core- shell nanocomposites, J. Alloys Compd. 487 (2009) 698-702.
-
[10]
[10] A. Goldman, Modern Ferrite Technology, 2nd ed., Springer, USA, 2006.
-
[11]
[11] J. Deng, L.P. Mo, F.Y. Zhao, et al., Sulfonic acid supported on hydroxyapatiteencapsulated-γ-Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds, Green Chem. 13 (2011) 2576-2584.
-
[12]
[12] L. Ma’mani, M. Sheykhan, A. Heydari, M. Faraji, Y. Yamini, Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Brønsted acid for N-formylation of amines, Appl. Catal. A 377 (2010) 64-69.
-
[13]
[13] M.B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley & Sons, 2013.
-
[14]
[14] H. Hattori, Heterogeneous basic catalysis, Chem. Rev. 95 (1995) 537-558.
-
[15]
[15] T. Hida, K. Komura, Y. Sugi, Cesium carbonate supported on alumina for the Michael addition of diethyl malonate to methyl acrylates, Bull. Chem. Soc. Jpn. 84 (2011) 960-967.
-
[16]
[16] M. Gupta, R. Gupta, M. Anand, Hydroxyapatite supported caesium carbonate as a new recyclable solid base catalyst for the Knoevenagel condensation in water, Beilstein J. Org. Chem. 5 (2009) 68-74.
-
[17]
[17] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Synthesis and pharmacological activity of 2-oxo-(2H)-1-benzopyran-3-carboxamide derivatives, Eur. J. Med. Chem. 28 (1993) 517-520.
-
[18]
[18] G. Vasuki, K. Kumaravel, Rapid four-component reactions in water: synthesis of pyranopyrazoles, Tetrahedron Lett. 49 (2008) 5636-5638.
-
[19]
[19] A. Khojastehnezhad, M. Rahimizadeh, F. Moeinpour, H. Eshghi, M. Bakavoli, Polyphosphoric acid supported on silica-coated NiFe2O4 nanoparticles: an efficient and magnetically recoverable catalyst for N-formylation of amines, C.R. Chimie 17 (2014) 459-464.
-
[20]
[20] F. Moeinpour, A. Khojastehnezhad, Polyphosphoric acid supported on Ni0.5Zn0.5-Fe2O4 nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles, Arab. J. Chem. (2014), http://dx.doi.org/10.1016/j.arabjc. 2014.02.009.
-
[21]
[21] A. Khojastehnezhad, M. Rahimizadeh, H. Eshghi, F. Moeinpour, M. Bakavoli, Ferric hydrogen sulfate supported on silica-coated nickel ferrite nanoparticles as new and green magnetically separable catalyst for 1,8-dioxodecahydroacridine synthesis, Chin. J. Catal. 35 (2014) 376-382.
-
[22]
[22] D. Zins, V. Cabuil, R. Massart, New aqueous magnetic fluids, J. Mol. Liq. 83 (1999) 217-232.
-
[23]
[23] M. Babaie, H. Sheibani, Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction, Arab. J. Chem. 4 (2011) 159-162.
-
[24]
[24] M. Farahi, B. Karami, I. Sedighimehr, H. Mohamadi Tanuraghaj, An environmentally friendly synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives catalyzed by tungstate sulfuric acid, Chin. Chem. Lett. 25 (2014) 1580-1582.
-
[25]
[25] H.F. Zhang, Z.Q. Ye, G. Zhao, Enantioselective synthesis of functionalized fluorinated dihydropyrano[2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane- thiourea, Chin. Chem. Lett. 25 (2014) 535-540.
-
[26]
[26] M.H. Brooker, J. Wang, Raman and infrared studies of lithium and cesium carbonates, Spectrochim. Acta A 48 (1992) 999-1008.
-
[1]
-
-
-
[1]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[2]
Xiao-Fang Lv , Xiao-Yun Ran , Yu Zhao , Rui-Rui Zhang , Li-Na Zhang , Jing Shi , Ji-Xuan Xu , Qing-Quan Kong , Xiao-Qi Yu , Kun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027
-
[3]
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
-
[4]
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
-
[5]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[6]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[7]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[8]
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
-
[9]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[10]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[11]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[12]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[13]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[14]
Rui Li , Ruijie Lu , Libin Yang , Jianwen Li , Zige Guo , Qiquan Yan , Mengjun Li , Yazhuo Ni , Keying Chen , Yaoyang Li , Bo Xu , Mengzhen Cui , Zhan Li , Zhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242
-
[15]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[16]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[17]
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
-
[18]
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
-
[19]
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
-
[20]
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(696)
- HTML views(24)