Citation:
Kayla J. Pyper, Taylor C. Evans, Bart M. Bartlett. Synthesis of α-SnWO4 thin-film electrodes by hydrothermal conversion from crystalline WO3[J]. Chinese Chemical Letters,
;2015, 26(4): 474-478.
doi:
10.1016/j.cclet.2015.01.027
-
Thin film electrodes of the orthorhombic form of tin tungstate (α-SnWO4) were prepared using a hydrothermal method to convert thin films of WO3 in aqueous SnCl2. The pH dependence of the growth mechanism was identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns show complete conversion of WO3(s) to SnWO4(s) at pH 1, 4, and 7. SEM images reveal a morphology change from sponge-like platelets to sharp nanowires as the pH increases from 1 to 7. The α-SnWO4 thin films were reddish brown in color, and display an indirect band gap of 1.9 eV by diffuse reflectance UV-vis spectroscopy. α-SnWO4 is therefore solar-responsive, and a chopped light linear sweep voltammogram recorded under 100 mW/cm2 AM1.5 simulated solar illumination in a pH 5 0.1 mol/L KPi buffer show a visible light response for photoelectrochemical water oxidation, producing 32 mA/cm2 at 1.23 V vs. RHE.
-
-
-
[1]
[1] C. Herrero, B. Lassalle-Kaiser, W. Leibl, A.W. Rutherford, A. Aukauloo, Artificial systems related to light driven electron transfer processes in PSII, Coord. Chem. Rev. 252 (2008) 456-468.
-
[2]
[2] Y. Ren, Z. Ma, P.G. Bruce, Ordered mesoporous metal oxides: synthesis and applications, Chem. Soc. Rev. 42 (2012) 4909-4927.
-
[3]
[3] G.Z. Shen, P.-C. Chen, K. Ryu, C.W. Zhou, Devices and chemical sensing applications of metal oxide nanowires, J. Mater. Chem. 19 (2009) 828-839.
-
[4]
[4] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 283 (1972) 37-38.
-
[5]
[5] K. Sivula, R. Zboril, F.L. Formal, et al., Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach, J. Am. Chem. Soc. 132 (2010) 7436-7444.
-
[6]
[6] P.P. González-Borrero, F. Sato, A.N. Medina, et al., Optical band-gap determination of nanostructured WO3 film, Appl. Phys. Lett. 96 (2010) 061909.
-
[7]
[7] S.P. Berglund, D.W. Flaherty, N.T. Hahn, A.J. Bard, C.B. Mullins, Photoelectrochemical oxidation of water using nanostructured BiVO4 films, J. Phys. Chem. C 115 (2011) 3794-3802.
-
[8]
[8] J.E. Yourey, K.J. Pyper, J.B. Kurtz, B.M. Bartlett, Chemical stability of CuWO4 for photoelectrochemical water oxidation, J. Phys. Chem. C 117 (2013) 8708-8718.
-
[9]
[9] R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, A. Segura, Optical absorption of divalent metal tungstates: correlation between the bandgap energy and the cation ionic radius, Europhys. Lett. 83 (2008) 37002.
-
[10]
[10] W. Jeitschko, A.W. Sleight, Synthesis, properties and crystal structure ofb-SnWO4, Acta Cryst. B28 (1972) 3174-3178.
-
[11]
[11] I.-S. Cho, C.H. Kwak, D.W. Kim, S. Lee, K.S. Hong, Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps, J. Phys. Chem. C 113 (2009) 10647-10653.
-
[12]
[12] H. Dong, Z. Li, Z.X. Ding, et al., Nanoplates of a-SnWO4 and SnW3O9 prepared via a facile hydrothermal method and their gas-sensing property, Sens. Actuators, B: Chem. 140 (2009) 623-628.
-
[13]
[13] G.Q. Zhu, W.X. Que, J. Zhang, P. Zhong, Photocatalytic activity of SnWO4 and SnW3O9 nanostructures prepared by a surfactant-assisted hydrothermal process, Mater. Sci. Eng., B 176 (2011) 1445-1448.
-
[14]
[14] J. Yang, W.Z. Li, J. Li, D.B. Sun, Q.Y. Chen, Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates, J. Mater. Chem. 22 (2012) 17744-17752.
-
[15]
[15] S. Uma, J. Singh, V. Thakral, Facile room temperature ion exchange synthesis of Sn2+ incorporated pyrochlore-type oxides and their photocatalytic activities, Inorg. Chem. 48 (2009) 11624-11630.
-
[16]
[16] P.G. Dickens, M.S. Whittingham, The tungsten bronzes and related compounds, Q. Rev. Chem. Soc. 22 (1968) 30-44.
-
[1]
-
-
-
[1]
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
-
[2]
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
-
[3]
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
-
[4]
Zirui Zhu , Peng Liu , Jinhua Wang , Hongbin Zhang , Wei Luo . Effects of nano-metakaolin on the enhanced properties and microstructure development of natural hydraulic lime. Chinese Chemical Letters, 2025, 36(4): 109794-. doi: 10.1016/j.cclet.2024.109794
-
[5]
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
-
[6]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[7]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[8]
Wenxuan Yang , Long Shang , Xiaomeng Liu , Sihan Zhang , Haixia Li , Zhenhua Yan , Jun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501
-
[9]
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
-
[10]
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
-
[11]
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
-
[12]
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
-
[13]
Haoyang Wang , Ronghao Zhang , Yanlun Ren , Li Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833
-
[14]
Ting Li , Xinxin Zheng , Lejing Qu , Yuanyuan Ou , Sai Qiao , Xue Zhao , Yajun Zhang , Xinfeng Zhao , Qian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792
-
[15]
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
-
[16]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[17]
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
-
[18]
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
-
[19]
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
-
[20]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(608)
- HTML views(28)