Citation: Li-Bin Zhang, Sheng-Rong Yang, Jin-Qing Wang, Ye Xu, Xiang-Zheng Kong. A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors[J]. Chinese Chemical Letters, ;2015, 26(5): 522-528. doi: 10.1016/j.cclet.2015.01.025 shu

A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors

  • Corresponding author: Sheng-Rong Yang,  Xiang-Zheng Kong, 
  • Received Date: 24 November 2014
    Available Online: 19 January 2015

    Fund Project: This study has been financially supported by National Natural Science Foundation of China (No. 51075384). (No. 51075384)

  • Composites of a nickel based compound incorporated with graphene sheets (NiBC-GS) are prepared by a simple flocculation, using hydrazine hydrate as flocculant and reductant, from a homogeneous intermixture of nickel dichloride and graphene oxide dispersed in N,N-dimethylformamide. Morphology, microstructure and thermal stability of the obtained products were characterized by field-emission scanning electron microscopy, X-ray diffraction and thermal gravimetric analysis. Furthermore, the electrochemical properties of NiBC-GS, as electrodematerials for supercapacitors, were studied by cyclic voltammetry and galvanostatic charge/discharge in 2 mol L-1 KOH solution. It was determined that for NiBC-GS annealed at 250 8C, a high specific capacitance of 2394 F g-1 was achieved at a current density of 1 A g-1, with 78% of the value (i.e., 1864 F g-1) retained after 5000 times of repeated galvanostatic charge/discharge cycling. The high specific capacitance and available charge/discharge stability indicate the synthesized NiBC-GS250 composite is a good candidate as a novel electrode material for supercapacitors.
  • 加载中
    1. [1]

      [1] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors, Chem. Rev. 104 (2004) 4245-4269.

    2. [2]

      [2] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.

    3. [3]

      [3] M.X. Liu, L. Gan, Y. Li, et al., Synthesis and electrochemical performance of hierarchical porous carbons with 3D open-cell structure based on nanosilicaembedded emulsion-templated polymerization, Chin. Chem. Lett. 25 (2014) 897- 901.

    4. [4]

      [4] Y. Xiao, C. Long, M.T. Zheng, et al., High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors, Chin. Chem. Lett. 25 (2014) 865-868.

    5. [5]

      [5] H.M. Zhang, X.H. Wang, Eco-friendly water-borne conducting polyaniline, Chin. J. Polym. Sci. 31 (2013) 853-869.

    6. [6]

      [6] G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.

    7. [7]

      [7] L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett. 25 (2014) 957-961.

    8. [8]

      [8] P. Miró,M. Audiffred, T. Heine, An atlas of two-dimensional materials, Chem. Soc. Rev. 43 (2014) 6537-6554.

    9. [9]

      [9] Y. Wang, Z.Q. Shi, Y. Huang, et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113 (2009) 13103-13107.

    10. [10]

      [10] H.M. Sun, L.Y. Cao, L.H. Lu, Bacteria promoted hierarchical carbon materials for high-performance supercapacitor, Energy Environ. Sci. 5 (2012) 6206-6213.

    11. [11]

      [11] J.T. Zhang, J.W. Jiang, H.L. Li, X.S. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes, Energy Environ. Sci. 4 (2011) 4009-4015.

    12. [12]

      [12] C.X. Guo, C.M. Li, A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance, Energy Environ. Sci. 4 (2011) 4504-4507.

    13. [13]

      [13] B.H. Kim, K.S. Yang, H.G. Woo, Boron-nitrogen functional groups on porous nanocarbon fibers for electrochemical supercapacitors, Mater. Lett. 93 (2013) 190-193.

    14. [14]

      [14] W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011) 1697-1721.

    15. [15]

      [15] V. Khomenko, E. Raymundo-Pinero, F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, J. Power Sources 153 (2006) 183-190.

    16. [16]

      [16] F.P. Zhao, Y.Y. Wang, X.N. Xu, et al., Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material, ACS Appl. Mater. Interf. 6 (2014) 11007-11012.

    17. [17]

      [17] L.B. Kong, J.W. Lang, M. Liu, Y.C. Luo, L. Kang, Facile approach to prepare loosepacked cobalt hydroxide nano-flakes materials for electrochemical capacitors, J. Power Sources 194 (2009) 1194-1201.

    18. [18]

      [18] H. Jiang, T. Zhao, C.Z. Li, J. Ma, Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors, J. Mater. Chem. 21 (2011) 3818-3823.

    19. [19]

      [19] J. Cheng, G.P. Cao, Y.S. Yang, Characterization of sol-gel-derived NiOx xerogels as supercapacitors, J. Power Sources 159 (2006) 734-741.

    20. [20]

      [20] J. Chang, J. Sun, C.H. Xu, H. Xu, L. Gao, Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors, Nanoscale 4 (2012) 6786-6791.

    21. [21]

      [21] Y. Wang, I. Zhitomirsky, Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors, Langmuir 25 (2009) 9684-9689.

    22. [22]

      [22] H. Chen, S.X. Zhou, L.M. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials, ACS Appl. Mater. Interf. 6 (2014) 8621-8630.

    23. [23]

      [23] Y. Huang, X.L. Huang, J.S. Lian, et al., Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage, J. Mater. Chem. 22 (2012) 2844-2847.

    24. [24]

      [24] J. Yan, W. Sun, T. Wei, et al., Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets, J. Mater. Chem. 22 (2012) 11494-11502.

    25. [25]

      [25] Z.H. Tang, B.C. Guo, L.Q. Zhang, D.M. Jia, Graphene-rubber nanocomposites, Acta Polym. Sin. (7) (2014) 865-877.

    26. [26]

      [26] X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686.

    27. [27]

      [27] H.W. Wang, Z.A. Hu, Y.Q. Chang, et al., Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors, J. Mater. Chem. 21 (2011) 10504-10511.

    28. [28]

      [28] Y. Cao, Q.M. Su, R.C. Che, G.H. Du, B.S. Xu, One-step chemical vapor synthesis of Ni/graphene nanocomposites with excellent electromagnetic and electrocatalytic properties, Synth. Met. 162 (2012) 968-973.

    29. [29]

      [29] S.B. Yang, X.L. Wu, C.L. Chen, et al., Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials, Chem. Commun. 48 (2012) 2773-2775.

    30. [30]

      [30] H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc. 132 (2010) 7472-7477.

    31. [31]

      [31] L.B. Zhang, J.Q. Wang, H.G. Wang, et al., Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites, Compos., A: Appl. Sci. Manuf. 43 (2012) 1537-1545.

    32. [32]

      [32] L.B. Zhang, J.Q. Wang, S.R. Yang, X.Z. Kong, Preparation and characterization of graphene sheet-polyimide nanocomposite films, Acta Polym. Sin. (2014) 1472- 1478.

    33. [33]

      [33] J.W. Park, E.H. Chae, S.H. Kim, et al., Preparation of fine Ni powders from nickel hydrazine complex, Mater. Chem. Phys. 97 (2006) 371-378.

    34. [34]

      [34] D. Nicholls, R. Swindells, Hydrazine complexes of nickel(II) chloride, J. Inorg. Nucl. Chem. 30 (1968) 2211-2217.

    35. [35]

      [35] C. Furlani, G. Mattogno, A. Monaci, F. Tarli, Ligand field spectra of hydrazine complexes of Ni(II) and the spectrochemical position of hydrazine, Inorg. Chim. Acta 4 (1970) 187-191.

    36. [36]

      [36] G.Y. Huang, S.M. Xu, G. Xu, L.Y. Li, L.F. Zhang, Preparation of fine nickel powders via reduction of nickel hydrazine complex precursors, Trans. Nonferrous Met. Soc. China 19 (2009) 389-393.

    37. [37]

      [37] B. Banerjee, P.K. Biswas, N.R. Chaudhuri, Thermal studies of nickel(II) hydrazine complexes in solid state, Bull. Chem. Soc. Jpn. 56 (1983) 2509- 2517.

    38. [38]

      [38] A. Leineweber, H. Jacobs, Preparation and crystal structures of Ni(NH3)2Cl2 and of two modifications of Ni(NH3)2Br2 and Ni(NH3)2I2, J. Solid State Chem. 152 (2000) 381-387.

    39. [39]

      [39] K.S. Rejitha, S. Mathew, Thermal behaviour of nickel(II) sulphate, nitrate and halide complexes containing ammine and ethylenediamine as ligands, J. Therm. Anal. Calorim. 106 (2011) 267-275.

    40. [40]

      [40] L. Guo, C.M. Liu, R.M. Wang, et al., Large-scale synthesis of uniform nanotubes of a nickel complex by a solution chemical route, J. Am. Chem. Soc. 126 (2004) 4530- 4531.

    41. [41]

      [41] S. Kulaksizoğlu, C. Gökçe, R. Gup, Asymmetric bis(bidentate) azine ligand and transition metal complexes: synthesis, characterization, DNA-binding and cleavage studies and extraction properties for selected metals and dichromate anions, J. Chil. Chem. Soc. 57 (2012) 1213-1218.

    42. [42]

      [42] M.S. Wu, K.C. Huang, Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors, Chem. Commun. 47 (2011) 12122-12124.

    43. [43]

      [43] J.W. Lang, L.B. Kong, W.J. Wu, et al., A facile approach to the preparation of loosepacked Ni(OH)2 nanoflake materials for electrochemical capacitors, J. Solid State Electrochem. 13 (2009) 333-340.

  • 加载中
    1. [1]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    2. [2]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    3. [3]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    4. [4]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    5. [5]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    6. [6]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    7. [7]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    8. [8]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    9. [9]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    10. [10]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    11. [11]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    12. [12]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    13. [13]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    16. [16]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    17. [17]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    18. [18]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    19. [19]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    20. [20]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

Metrics
  • PDF Downloads(0)
  • Abstract views(638)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return