Citation:
Shi Jin, Robert T. Kennedy. New developments in Western blot technology[J]. Chinese Chemical Letters,
;2015, 26(4): 416-418.
doi:
10.1016/j.cclet.2015.01.021
-
Western blotting is a highly valued method for protein identification and relative quantitation in complex samples. It combines size-based electrophoretic separation with immunoaffinity to identify specific proteins. This technique remains popular and has become a workhorse in biochemical research and clinical laboratories. Despite its utility and popularity, this method has many limitations including slow analysis, incompatibility with limited sample application, low throughput and low information content. Recently there has been significant success in improving different aspects of Western blotting. In this review, we provide an overview of the developments in the area of improving conventional Western blotting methods with a focus on recent developments in microfluidic Western blotting. We overview different separation platforms, and discuss studies on protein transfer methods as well as protein immobilization methods and chemistries. We also describe integrated miniaturized platforms that can perform rapid separations and immunodetections.
-
Keywords:
- Western blot,
- Microfluidic,
- Gel electrophoresis,
- Immunoassay
-
-
-
[1]
[1] H. Towbin, T. Staehelin, J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. U. S. A. 76 (1979) 4350-4354.
-
[2]
[2] W.N. Burnette, Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A, Anal. Biochem. 112 (1981) 195-203.
-
[3]
[3] http://www.western-blot.us/applications-of-western-blotting/ applications-in-medical-diagnosis.
-
[4]
[4] http://www.cdc.gov/lyme/diagnosistesting/LabTest/TwoStep/WesternBlot/ index.html.
-
[5]
[5] J.A. Reynolds, C. Tanford, The gross conformation of protein-sodium dodecyl sulfate complexes, J. Biol. Chem. 245 (1970) 5161-5165.
-
[6]
[6] Q.H. Ru, Y.M. Wang, G.A. Luo, Studies on human immunoglobulin G from GBS patient (III)-the determination of molecular weight of human immunoglobulin G by capillary SDS gel electrophoresis, Chin. Chem. Lett. 10 (1999) 55-58.
-
[7]
[7] G.J. Anderson, C.M. Cipolla, R.T. Kennedy, Western blotting using capillary electrophoresis, Anal. Chem. 83 (2011) 1350-1355.
-
[8]
[8] H.Y. Zhang, R.M. Caprioli, Capillary electrophoresis combined with matrixassisted laser desorption/ionization mass spectrometry; continuous sample deposition on a matrix-precoated membrane target, J. Mass Spectrom. 31 (1996) 1039-1046.
-
[9]
[9] J.J. Lu, Z.F. Zhu, W. Wang, S.R. Liu, Coupling sodium dodecyl sulfate-capillary polyacrylamide gel electrophoresis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry via a poly(tetrafluoroethylene) membrane, Anal. Chem. 83 (2011) 1784-1790.
-
[10]
[10] R.A. O'Neill, A. Bhamidipati, X.H. Bi, et al., Isoelectric focusing technology quantifies protein signaling in 25 cells, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 16153-16158.
-
[11]
[11] A.J. Hughes, A.E. Herr, Microfluidic western blotting, Proc. Natl. Acad. Sci. U. S. A. 109 (2013) 21450-21455.
-
[12]
[12] L. Bousse, S. Mouradian, A. Minalla, et al., Protein sizing on a microchip, Anal. Chem. 73 (2001) 1207-1212.
-
[13]
[13] D.P. Wu, J.H. Qin, B.C. Lin, Electrophoretic separations on microfluidic chips, J. Chromatogr. A 1184 (2008) 542-559.
-
[14]
[14] M. He, A.E. Herr, Polyacrylamide gel photopatterning enables automated protein immunoblotting in a two-dimensional microdevice, J. Am. Chem. Soc. 132 (2010) 2512-2513.
-
[15]
[15] M. He, A.E. Herr, Microfluidic polyacrylamide gel electrophoresis with in situ immunoblotting for native protein analysis, Anal. Chem. 81 (2009) 8177-8184.
-
[16]
[16] S.Q. Tia, M. He, D. Kim, A.E. Herr, Multianalyte on-chip native western blotting, Anal. Chem. 83 (2011) 3581-3588.
-
[17]
[17] D. Kim, A.E. Herr, Protein immobilization techniques for microfluidic assays, Biomicrofluidics 7 (2013) 041501.
-
[18]
[18] A.J. Hughes, R.K. Lin, D.M. Peehl, A.E. Herr, Microfluidic integration for automated targeted proteomic assays, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 5972-5977.
-
[19]
[19] S. Jin, G.J. Anderson, R.T. Kennedy, Western blotting using microchip electrophoresis interfaced to a protein capture membrane, Anal. Chem. 85 (2013) 6073-6079.
-
[20]
[20] W.Y. Pan, W. Chen, X.Y. Jiang, Microfluidic western blot, Anal. Chem. 82 (2010) 3974-3976.
-
[21]
[21] A.J. Hughes, D.P. Spelke, Z.C. Xu, et al., Single-cell western blotting, Nat. Methods 11 (2014) 749-755.
-
[22]
[22] eBioscience Sheds Western Blot Line, GEN News Highlights [Online], 2012.
-
[23]
[23] Rockland Immunochemicals Acquires TrueBlot(R) Product Line, Business Wire [Online], 2012.
-
[24]
[24] http://www.genomics.agilent.com/en/Bioanalyzer-System/ 2100-Bioanalyzer-Instruments/-System.
-
[25]
[25] https://www.emdmillipore.com/US/en/product/SNAP-i.d.%C2%AE-2. 0-Protein-Detection-System,MM_NF-C73105.
-
[26]
[26] http://www.lifetechnologies.com/us/en/home/life-science/ protein-expression-and-analysis/western-blotting.html.
-
[27]
[27] http://www.proteinsimple.com/.
-
[1]
-
-
-
[1]
Shaobin He , Xiaoyun Guo , Qionghua Zheng , Huanran Shen , Yuan Xu , Fenglin Lin , Jincheng Chen , Haohua Deng , Yiming Zeng , Wei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096
-
[2]
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
-
[3]
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
-
[4]
Gaowa Xing , Yuting Shang , Xiaorui Wang , Zengnan Wu , Qiang Zhang , Jiebing Ai , Qiaosheng Pu , Ling Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491
-
[5]
Jun Lu , Jinrui Yan , Yaohao Guo , Junjie Qiu , Shuangliang Zhao , Bo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876
-
[6]
Cheng Wang , Ji Wang , Dong Liu , Zhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302
-
[7]
Feng Wu , Xuemin Kong , Yixuan Liu , Shuli Wang , Zhong Chen , Xu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754
-
[8]
Ruixin Liu , Feng Shi , Yanping Xia , Haibing Zhu , Jiawen Cao , Kai Peng , Chuanli Ren , Juan Li , Zhanjun Yang . Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chinese Chemical Letters, 2024, 35(11): 109664-. doi: 10.1016/j.cclet.2024.109664
-
[9]
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
-
[10]
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
-
[11]
Donghui Wu , Qilin Zhao , Jian Sun , Xiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881
-
[12]
Dan Zhou , Liangjin Bao , Haoqi Long , Duo Zhou , Yuwei Xu , Bo Wang , Chuanqin Xia , Liang Xian , Chengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(622)
- HTML views(24)