Citation:
Joseph Jankolovits, Jeff W. Kampf, Vincent L. Pecoraro. Assembly of zinc metallacrowns with an α-amino hydroxamic acid ligand[J]. Chinese Chemical Letters,
;2015, 26(4): 444-448.
doi:
10.1016/j.cclet.2015.01.017
-
In the assembly of metallacrowns for molecular recognition, luminescence, and molecular magnetism applications, substituting the ring ion can have profound effects on the structure, stability, and physical properties of the inorganic macrocycle. The assembly of Zn(Ⅱ) metallacrowns with an α-amino hydroxamic acid ligand (pheHA) was investigated to compare the assembly behavior with the well studied metallacrowns containing Cu(Ⅱ) and Ni(Ⅱ). Electrospray ionization mass spectrometry reveals that the benchmark species Zn5(pheHA)42+ and LnZn5(pheHA)53+ assemble in pyridine, which is consistent with the behavior of Cu(Ⅱ) and Ni(Ⅱ). A LnZn4(pheHA)43+ species is also observed in a 1:1 DMF-pyridine mixture. An unprecedented La(Ⅲ)[16-MCZn(Ⅱ),pheHA,HpheHA-6]5+ complex was crystallographically characterized that possesses unusual C2 symmetry. These results provide insights into the design of functional metallacrowns through ring ion substitution.
-
Keywords:
- Metallacrown,
- Self-assembly,
- Supramolecular chemistry,
- Lanthanides,
- Zinc
-
-
-
[1]
[1] G. Mezei, C.M. Zaleski, V.L. Pecoraro, Structural and functional evolution of metallacrowns, Chem. Rev. 107 (2007) 4933-5003.
-
[2]
[2] V.L. Pecoraro, A.J. Stemmler, B.R. Gibney, et al., Metallacrowns: a new class of molecular recognition agents, Prog. Inorg. Chem. 45 (1997) 83-177.
-
[3]
[3] C.M. Zaleski, E.C. Depperman, J.W. Kampf, M.L. Kirk, V.L. Pecoraro, Synthesis, structure, and magnetic properties of a large lanthanide-transition-metal singlemolecule magnet, Angew. Chem. Int. Ed. 43 (2004) 3912-3914.
-
[4]
[4] C.M. Zaleski, J.W. Kampf, T. Mallah, M.L. Kirk, V.L. Pecoraro, Assessing the slow magnetic relaxation behavior of LnIII4MnIII6 metallacrowns, Inorg. Chem. 46 (2007) 1954-1956.
-
[5]
[5] C.M. Zaleski, S. Tricard, E.C. Depperman, et al., Single molecule magnet behavior of a pentanuclear Mn-based metallacrown complex: solid state and solution magnetic studies, Inorg. Chem. 50 (2011) 11348-11352.
-
[6]
[6] T.T. Boron, J.W. Kampf, V.L. Pecoraro, A mixed 3d-4f 14-metallacrown-5 complex that displays slow magnetic relaxation through geometric control of magnetoanisotropy, Inorg. Chem. 49 (2010) 9104-9106.
-
[7]
[7] C.M. Zaleski, E.C. Depperman, J.W. Kampf, M.L. Kirk, V.L. Pecoraro, Using LnIII[15-MCCuII(N)(S)-pheHA-5]3+ complexes to construct chiral single-molecule magnets and chains of single-molecule magnets, Inorg. Chem. 45 (2006) 10022-10024.
-
[8]
[8] J. Jankolovits, C.M. Andolina, J.W. Kampf, K.N. Raymond, V.L. Pecoraro, Assembly of near-infrared luminescent lanthanide host (host-guest) complexes with a metallacrown sandwich motif, Angew. Chem. Int. Ed. 50 (2011) 9660-9664.
-
[9]
[9] E.R. Trivedi, S.V. Eliseeva, J. Jankolovits, et al., Highly emitting near-infrared lanthanide "encapsulated sandwich" metallacrown complexes with excitation shifted toward lower energy, J. Am. Chem. Soc. 136 (2014) 1526-1534.
-
[10]
[10] M. Moon, I. Kim, M.S. Lah, Three-dimensional framework constructed using nanometer-sized metallamacrocycle as a secondary building unit, Inorg. Chem. 39 (2000) 2710-2711.
-
[11]
[11] C.S. Lim, J. Jankolovits, J.W. Kampf, V.L. Pecoraro, Chiral metallacrown supramolecular compartments that template nanochannels: self-assembly and guest absorption, Chem. Asian J. 5 (2010) 46-49.
-
[12]
[12] A.V. Pavlishchuk, S.V. Kolotilov, M. Zeller, et al., Magnetic and sorption properties of supramolecular systems based on pentanuclear copper(Ⅱ) 12-metallacrown-4 complexes and isomeric phthalates: structural modeling of the different stages of alcohol sorption, Eur. J. Inorg. Chem. 2011 (2011) 4826-4836.
-
[13]
[13] J.T. Grant, J. Jankolovits, V.L. Pecoraro, Enhanced guest affinity and enantioselectivity through variation of the Gd3+[15-Metallacrown-5] side chain, Inorg. Chem. 51 (2012) 8034-8041.
-
[14]
[14] M. Tegoni, M. Tropiano, L. Marchio, Thermodynamics of binding of carboxylates to amphiphilic Eu3+/Cu2+ metallacrown, Dalton Trans. (2009) 6705-6708.
-
[15]
[15] M. Tegoni, M. Remelli, Metallacrowns of copper(Ⅱ) and aminohydroxamates: thermodynamics of self assembly and host-guest equilibria, Coord. Chem. Rev. 256 (2012) 289-315.
-
[16]
[16] A.D. Cutland, J.A. Halfen, J.W. Kampf, V.L. Pecoraro, Chiral 15-metallacrown-5 complexes differentially bind carboxylate anions, J. Am. Chem. Soc. 123 (2001) 6211-6212.
-
[17]
[17] J.C.-G. Bunzli, C. Piguet, Lanthanide-containing molecular and supramolecular polymetallic functional assemblies, Chem. Rev. 102 (2002) 1897-1928.
-
[18]
[18] N. Sabbatini, S. Perathoner, G. Lattanzi, S. Dellonte, V. Balzani, Electron- and energy-transfer processes involving excited states of lanthanide complexes: evidence for Inner-sphere and Outer-sphere mechanisms, Inorg. Chem. 27 (1988) 1628-1633.
-
[19]
[19] A.J. Stemmler, J.W. Kampf, M.L. Kirk, B.H. Atasi, V.L. Pecoraro, The preparation, characterization, and magnetism of copper 15-metallacrown-5 lanthanide complexes, Inorg. Chem. 38 (1999) 2807-2817.
-
[20]
[20] M. Tegoni, M. Furlotti, M. Tropiano, C.-S. Lim, V.L. Pecoraro, Thermodynamics of core metal replacement and self-assembly of Ca2+ 15-metallacrown-5, Inorg. Chem. 49 (2010) 5190-5201.
-
[21]
[21] F. Dallavalle, M. Remelli, F. Sansone, D. Bacco, M. Tegoni, Thermodynamics of selfassembly of copper(Ⅱ) 15-metallacrown-5 of Eu(III) or Gd(III) with (S)-a-Alaninehydroxamic acid in aqueous solution, Inorg. Chem. 49 (2010) 1761-1772.
-
[22]
[22] S.H. Seda, J. Janczak, J. Lisowski, Synthesis and structural characterisation of nickel 15-metallacrown-5 complexes with lanthanide(III) and lead(Ⅱ) ions: influence of the central metal ion size on the spin state of peripheral nickel(Ⅱ) ions, Inorg. Chem. Commun. 9 (2006) 792-796.
-
[23]
[23] Metallacrown nomenclature follows the formula M(N)[# ring atoms-MCM0(N0), L-# ring oxygens](anions) (coordinated ligands) where M is the central ion, N is the oxidation state of the central metal, MC is the abbreviation of metallacrown, M0 is the ring ion, N0 is the oxidation state of the ring ion, and L is the ligand.
-
[24]
[24] J. Jankolovits, J.W. Kampf, V.L. Pecoraro, Insight into the structural versatility of the Ln(III)[15-metallacrown-5] platform by comparing analogs with Ni(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) ring ions, Polyhedron 52 (2013) 491-499.
-
[25]
[25] J. Jankolovits, J.W. Kampf, V.L. Pecoraro, Solvent dependent assembly of lanthanide metallacrowns using building blocks with incompatible symmetry preferences, Inorg. Chem. 53 (2014) 7534-7546.
-
[26]
[26] A.J. Stemmler, J.W. Kampf, V.L. Pecoraro, A planar[15]metallacrown-5 that selectively binds the uranyl cation, Angew. Chem. Int. Ed. Engl. 35 (1996) 2841-2843.
-
[27]
[27] R. Chakrabarty, P.S. Mukherjee, P.J. Stang, Supramolecular coordination: selfassembly of finite two- and three-dimensional ensembles, Chem. Rev. 111 (2011) 6810-6918.
-
[28]
[28] A.J. Stemmler, J.W. Kampf, V.L. Pecoraro, Synthesis and crystal structure of the first inverse 12-metallacrown-4, Inorg. Chem. 34 (1995) 2271-2272.
-
[29]
[29] M. Careri, F. Dallavalle, M. Tegoni, I. Zagnoni, Pentacopper(Ⅱ) 12-metallacrown-4 complexes with a- and b-aminohydroxamic acids in aqueous solution: a reinvestigation, J. Inorg. Biochem. 93 (2003) 174-180.
-
[30]
[30] M. Tegoni, M. Remelli, D. Bacco, L. Marchio, F. Dallavalle, Copper(Ⅱ) 12-metallacrown- 4 complexes of a-, b- and g-aminohydroxamic acids: a comparative thermodynamic study in aqueous solution, Dalton Trans. (2008) 2693-2701.
-
[31]
[31] L. Marchio, N. Marchetti, C. Atzeri, V. Borghesani, M. Remelli, M. Tegoni, The peculiar behavior of Picha in the formation of metallacrown complexes with Cu(Ⅱ), Ni(Ⅱ) and Zn(Ⅱ) in aqueous solution, Dalton Trans. 44 (2015) 3237-3250.
-
[32]
[32] D. Bacco, V. Bertolasi, F. Dallavalle, et al., Metallacrowns of Ni(Ⅱ) with a-aminohydroxamic acids in aqueous solution: beyond a 12-MC-4, an unexpected (vacant?) 15-MC-5, Dalton Trans. 40 (2011) 2491-2501.
-
[33]
[33] J. Jankolovits, J.W. Kampf, V.L. Pecoraro, Isolation of elusive tetranuclear and pentanuclear M(Ⅱ)-hydroximate intermediates in the assembly of lanthanide [15-metallacrown-5] complexes, Inorg. Chem. 52 (2013) 5063-5076.
-
[34]
[34] J. Jankolovits, C.-S. Lim, G. Mezei, J.W. Kampf, V.L. Pecoraro, Influencing the size and anion selectivity of dimeric Ln3+[15-metallacrown-5] compartments through systematic variation of the host side chains and central metal, Inorg. Chem. 51 (2012) 4527-4538.
-
[35]
[35] Bruker Analytical X-ray, Saint Plus v 7.60, Madison, WI, 2009.
-
[36]
[36] G.M. Sheldrick, Program for Empirical Absorbtion Correction of Area Detector Data, Gottingen, Germany, 2008.
-
[37]
[37] G.M. Sheldrick, A short history of SHELX, Acta Crystallogr. A64 (2008) 112-122.
-
[38]
[38] F. Dallavalle, M. Tegoni, Speciation and structure of copper(Ⅱ) complexes with (s)- phenylalanine- and (s)-tryptophanhydroxamic acids in methanol/water solution: a combined potentiometric, spectrophotometric, CD and ESI-MS study, Polyhedron 20 (2001) 2697-2704.
-
[39]
[39] M. Tegoni, F. Dallavalle, B. Belosi, M. Remelli, Unexpected formation of a copper(Ⅱ) 12-metallacrown-4 with (S)-glutamic-gamma-hydroxamic acid: a thermodynamic and spectroscopic study in aqueous solution, Dalton Trans. (2004) 1329-1333.
-
[40]
[40] M. Remelli, D. Bacco, F. Dallavalle, et al., Stoichiometric diversity of Ni(Ⅱ) metallacrowns with b-alaninehydroxamic acid in aqueous solution, Dalton Trans. 42 (2013) 8018-8025.
-
[41]
[41] M. Tegoni, L. Ferretti, F. Sansone, et al., Synthesis, solution thermodynamics, and X-ray study of CuII [12]metallacrown-4 with GABA hydroxamic acid: an unprecedented crystal structure of a [12]MC-4 with a g-Aminohydroxamate, Chem. Eur. J. 13 (2007) 1300-1308.
-
[42]
[42] B. Kurzak, E. Farkas, T. Glowiak, H. Kozlowski, J. Chem. Soc. Dalton Trans. (1991) 163-167.
-
[43]
[43] M.S. Lah, V.L. Pecoraro, Isolation and characterization of {MnII[MnIII(salicylhydroximate)] 4(acetate)2(DMF)6}.cntdot.2DMF: an inorganic analog of M2+(12- crown-4), J. Am. Chem. Soc. 111 (1989) 7258-7259.
-
[44]
[44] B.R. Gibney, D.P. Kessissoglou, J.W. Kampf, V.L. Pecoraro, Copper(Ⅱ) 12-metallacrown- 4: synthesis, structure, ligand variability, and solution dynamics in the 12-MC-4 structural motif, Inorg. Chem. 33 (1994) 4840-4849.
-
[45]
[45] A.J. Stemmler, A. Barwinski, M.J. Baldwin, V. Young, V.L. Pecoraro, Facile preparation of face differentiated, chiral 15-metallacrown-5 complexes, J. Am. Chem. Soc. 118 (1996) 11962-11963.
-
[46]
[46] J.A. Halfen, J.J. Bodwin, V.L. Pecoraro, Preparation and characterization of chiral copper 12-metallacrown-4 complexes, inorganic analogues of tetraphenylporphyrinatocopper( II), Inorg. Chem. 37 (1998) 5416-5417.
-
[47]
[47] R. Codd, Traversing the coordination chemistry and chemical biology of hydroxamic acids, Coord. Chem. Rev. 252 (2008) 1387-1408.
-
[48]
[48] A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(Ⅱ) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-20-yl)-2,6-dithiaheptane]copper(Ⅱ) perchlorate, J. Chem. Soc. Dalton Trans. (1984) 1349-1356.
-
[49]
[49] M.K. Sharma, P. Lama, P.K. Bharadwaj, Reversible single-crystal to single-crystal exchange of guests in a seven-fold interpenetrated diamondoid coordination polymer, Cryst. Growth Des. 11 (2011) 1411-1416.
-
[50]
[50] B.J. Holliday, C.A. Mirkin, Strategies for the construction of supramolecular compounds through coordination chemistry, Angew. Chem. Int. Ed. 40 (2001) 2022-2043.
-
[1]
-
-
-
[1]
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
-
[2]
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
-
[3]
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
-
[4]
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
-
[5]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[6]
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
-
[7]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[8]
Chao Zhang , Ai-Feng Liu , Shihui Li , Fang-Yuan Chen , Jun-Tao Zhang , Fang-Xing Zeng , Hui-Chuan Feng , Ping Wang , Wen-Chao Geng , Chuan-Rui Ma , Dong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752
-
[9]
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
-
[10]
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
-
[11]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[12]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[13]
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
-
[14]
Kang Wei , Jiayu Li , Wen Zhang , Bing Yuan , Ming-De Li , Pingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055
-
[15]
Junying Zhang , Ruochen Li , Haihua Wang , Wenbing Kang , Xing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216
-
[16]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[17]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[18]
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
-
[19]
Jingyu Chen , Sha Wu , Yuhao Wang , Jiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102
-
[20]
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(611)
- HTML views(3)