Citation: John N. Myers, Zhan Chen. Surface plasma treatment effects on the molecular structure at polyimide/air and buried polyimide/epoxy interfaces[J]. Chinese Chemical Letters, ;2015, 26(4): 449-454. doi: 10.1016/j.cclet.2015.01.016 shu

Surface plasma treatment effects on the molecular structure at polyimide/air and buried polyimide/epoxy interfaces

  • Corresponding author: Zhan Chen, 
  • Received Date: 4 November 2014
    Available Online: 25 December 2014

    Fund Project: This work is supported by the Semiconductor Research Corporation (SRC contract No. 2012-KJ-2282). We thank Jaimal M. Williamson at Texas Instruments Inc., Dr. Kang-Wook Lee at IBM, and Dr. Chunyan Chen, Dr. Yuying Wei, and Dr. Yonghao Xiu at Intel Corporation for insightful discussions. (SRC contract No. 2012-KJ-2282)

  • Polyimides are widely used as chip passivation layers and organic substrates in microelectronic packaging. Plasma treatment has been used to enhance the interfacial properties of polyimides, but its molecularmechanism is not clear. In this research, the effects of polyimide surface plasma treatment on the molecular structures at corresponding polyimide/air and buried polyimide/epoxy interfaces were investigated in situ using sum frequency generation (SFG) vibrational spectroscopy. SFG results show that the polyimide backbone molecular structure was different at polyimide/air and polyimide/epoxy interfaces before and after plasma treatment. The different molecular structures at each interface indicate that structural reordering of the polyimide backbone occurred as a result of plasma treatment and contact with the epoxy adhesive. Furthermore, quantitative orientation analysis indicated that plasma treatment of polyimide surfaces altered the twist angle of the polyimide backbone at corresponding buried polyimide/epoxy interfaces. These SFG results indicate that plasma treatment of polymer surfaces can alter the molecular structure at corresponding polymer/air and buried polymer interfaces.
  • 加载中
    1. [1]

      [1] V.K. Khanna, Adhesion-delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices, J. Phys. Appl. Phys. 44 (2011) 034004.

    2. [2]

      [2] S. Luo, C.P. Wong, Influence of temperature and humidity on adhesion of underfills for flip chip packaging, IEEE Trans. Compon. Packag. Technol. 28 (2005) 88-94.

    3. [3]

      [3] S.J. Luo, C.P. Wong, Effect of UV/ozone treatment on surface tension and adhesion in electronic packaging, IEEE Trans. Compon. Packag. Technol. 24 (2001) 43-49.

    4. [4]

      [4] P. Hoontrakul, L.H. Sperling, R.A. Pearson, Understanding the strength of epoxy- polyimide interfaces for flip-chip packages, IEEE Trans. Device Mater. Reliab. 3 (2003) 159-166.

    5. [5]

      [5] F. Awaja, M. Gilbert, G. Kelly, B. Fox, P.J. Pigram, Adhesion of polymers, Prog. Polym. Sci. 34 (2009) 948-968.

    6. [6]

      [6] Z. Chen, Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy, Prog. Polym. Sci. 35 (2010) 1376-1402.

    7. [7]

      [7] C. Zhang, J.N. Myers, Z. Chen, Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy, Soft Matter 9 (2013) 4738-4761.

    8. [8]

      [8] J.M. Hankett, Y.W. Liu, X.X. Zhang, C. Zhang, Z. Chen, Molecular level studies of polymer behaviors at the water interface using sum frequency generation vibrational spectroscopy, J. Polym. Sci. B: Polym. Phys. 51 (2013) 311-328.

    9. [9]

      [9] K. Nanjundiah, P.Y. Hsu, A. Dhinojwala, Understanding rubber friction in the presence of water using sum-frequency generation spectroscopy, J. Chem. Phys. 130 (2009) 024702.

    10. [10]

      [10] C.L. Loch, D. Ahn, Z. Chen, Sum frequency generation vibrational spectroscopic studies on a silane adhesion-promoting mixture at a polymer interface, J. Phys. Chem. B 110 (2006) 914-918.

    11. [11]

      [11] C.L. Loch, D. Ahn, A.V. Vazquez, Z. Chen, Diffusion of one or more components of a silane adhesion-promoting mixture into poly(methyl methacrylate), J. Colloid Interface Sci. 308 (2007) 170-175.

    12. [12]

      [12] A.V. Va´zquez, A.P. Boughton, N.E. Shephard, S.M. Rhodes, Z. Chen, Molecular structures of the buried interfaces between silicone elastomer and silane adhesion promoters probed by sum frequency generation vibrational spectroscopy and molecular dynamics simulations, ACS Appl. Mater. Interfaces 2 (2010) 96-103.

    13. [13]

      [13] C. Zhang, J.N. Myers, Z. Chen, Molecular behavior at buried epoxy/poly(ethylene terephthalate) interface, Langmuir 30 (2014) 12541-12550.

    14. [14]

      [14] C. Zhang, Z. Chen, Quantitative molecular level understanding of ethoxysilane at poly(dimethylsiloxane)/polymer interfaces, Langmuir 29 (2013) 610-619.

    15. [15]

      [15] J.N. Myers, C. Zhang, K.W. Lee, J. Williamson, Z. Chen, Hygrothermal aging effects on buried molecular structures at epoxy interfaces, Langmuir 30 (2014) 165-171.

    16. [16]

      [16] X. Zhang, J.N. Myers, J.D. Bielefeld, Q. Lin, Z. Chen, In situ observation of water behavior at the surface and buried interface of a low-K dielectric film, ACS Appl. Mater. Interfaces 6 (2014) 18951-18961.

    17. [17]

      [17] A. Kurian, S. Prasad, A. Dhinojwala, Direct measurement of acid-base interaction energy at solid interfaces, Langmuir 26 (2010) 17804-17807.

    18. [18]

      [18] Y. Fang, B.L. Li, J.C. Yu, et al., Probing surface and interfacial molecular structures of a rubbery adhesion promoter using sum frequency generation vibrational spectroscopy, Surf. Sci. 615 (2013) 26-32.

    19. [19]

      [19] S. Onard, I. Martin, J.-F. Chailan, A. Crespy, P. Carriere, Nanostructuration in thin epoxy-amine films inducing controlled specific phase etherification: effect on the glass transition temperatures, Macromolecules 44 (2011) 3485-3493.

    20. [20]

      [20] W.-T. Liu, Y.R. Shen, In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 1293-1297.

    21. [21]

      [21] J. Sung, G.A. Waychunas, Y.R. Shen, Surface-induced anisotropic orientations of interfacial ethanol molecules at air/sapphire (1 ˉ1 0 2) and ethanol/sapphire (1 ˉ1 0 2) interfaces, J. Phys. Chem. Lett. 2 (2011) 1831-1835.

    22. [22]

      [22] C.M. Thompson, L.M. Carl, G.A. Somorjai, Sum frequency generation study of the interfacial layer in liquid-phase heterogeneously catalyzed oxidation of 2-propanol on platinum: effect of the concentrations of water and 2-propanol at the interface, J. Phys. Chem. C 117 (2013) 26077-26083.

    23. [23]

      [23] H. Wang, A. Sapi, C.M. Thompson, et al., Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles, J. Am. Chem. Soc. 136 (2014) 10515-10520.

    24. [24]

      [24] S.J. Ye, H.C. Li, W.L. Yang, Y. Luo, Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals, J. Am. Chem. Soc. 136 (2014) 1206-1209.

    25. [25]

      [25] F. Wei, H.C. Li, S.J. Ye, Specific ion interaction dominates over hydrophobic matching effects in peptide-lipid bilayer interactions: the case of short peptide, J. Phys. Chem. C 117 (2013) 26190-26196.

    26. [26]

      [26] X.L. Lu, B.L. Li, P.Z. Zhu, G. Xue, D.W. Li, Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy, Soft Matter 10 (2014) 5390-5397.

    27. [27]

      [27] X.L. Lu, J.N. Myers, Z. Chen, Molecular ordering of phenyl groups at the buried polystyrene/metal interface, Langmuir 30 (2014) 9418-9422.

    28. [28]

      [28] Q.F. Li, C.W. Kuo, Z. Yang, P.L. Chen, K.C. Chou, Surface-enhanced IR-visible sum frequency generation vibrational spectroscopy, Phys. Chem. Chem. Phys. 11 (2009) 3436-3442.

    29. [29]

      [29] Q.F. Li, R. Hua, K.C. Chou, Electronic and conformational properties of the conjugated polymer MEH-PPV at a buried film/solid interface investigated by two-dimensional IR-visible sum frequency generation, J. Phys. Chem. B 112 (2008) 2315-2318.

    30. [30]

      [30] J.N. Myers, C. Zhang, C.Y. Chen, Z. Chen, Influence of casting solvent on phenyl ordering at the surface of spin cast polymer thin films, J. Colloid Interface Sci. 423 (2014) 60-66.

    31. [31]

      [31] J. Wang, C.Y. Chen, S.M. Buck, Z. Chen, Molecular chemical structure on poly(- methyl methacrylate) (PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy, J. Phys. Chem. B 105 (2001) 12118-12125.

    32. [32]

      [32] K. Ha, J.L. West, Studies on the photodegradation of polarized UV-exposed PMDAODA polyimide films, J. Appl. Polym. Sci. 86 (2002) 3072-3077.

    33. [33]

      [33] W.S. Li, Z.X. Shen, J.Z. Zheng, S.H. Tang, FT-IR study of the imidization process of photosensitive polyimide PMDA/ODA, Appl. Spectrosc. 52 (1998) 985-989.

    34. [34]

      [34] D. Kim, Y.R. Shen, Study of wet treatment of polyimide by sum-frequency vibrational spectroscopy, Appl. Phys. Lett. 74 (1999) 3314-3316.

    35. [35]

      [35] D. Kim, M. Oh-E, Y.R. Shen, Rubbed polyimide surface studied by sum-frequency vibrational spectroscopy, Macromolecules 34 (2001) 9125-9129.

    36. [36]

      [36] J. Sung, D. Kim, C.N. Whang, M. Oh-E, H. Yokoyama, Sum-frequency vibrational spectroscopic study of polyimide surfaces made by spin coating and ionized cluster beam deposition, J. Phys. Chem. B 108 (2004) 10991-10996.

    37. [37]

      [37] M. Oh-E, H. Yokoyama, D. Kim, Mapping molecular conformation and orientation of polyimide surfaces for homeotropicliquid crystal alignment by nonlinear optical spectroscopy, Phys. Rev. E 69 (2004) 051705.

    38. [38]

      [38] A.G. Lambert, P.B. Davies, D.J. Neivandt, Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review, Appl. Spectrosc. Rev. 40 (2005) 103-145.

    39. [39]

      [39] D. Wolany, T. Fladung, L. Duda, et al., Combined ToF-SIMS/XPS study of plasma modification and metallization of polyimide, Surf. Interface Anal. 27 (1999) 609-617.

    40. [40]

      [40] S.H. Kim, S.W. Na, N.E. Lee, Y.W. Nam, Y.H. Kim, Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma, Surf. Coat. Technol. 200 (2005) 2072-2079.

    41. [41]

      [41] Y.S. Lin, H.M. Liu, H.T. Chen, Surface modification of polyimide films by argon plasma for copper metallization on microelectronic flex substrates, J. Appl. Polym. Sci. 99 (2006) 744-755.

    42. [42]

      [42] K.W. Lee, S.P. Kowalczyk, J.M. Shaw, Surface modification of PMDA-oxydianiline polyimide. Surface structure-adhesion relationship, Macromolecules 23 (1990) 2097-2100.

    43. [43]

      [43] P. Hoontrakul, R.A. Pearson, Surface reactivity of polyimide and its effect on adhesion to epoxy, J. Adhes. Sci. Technol. 20 (2006) 1905-1928.

  • 加载中
    1. [1]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    2. [2]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    3. [3]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    4. [4]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    5. [5]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    6. [6]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    7. [7]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    8. [8]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    9. [9]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    10. [10]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    11. [11]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    12. [12]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    13. [13]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    14. [14]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    15. [15]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    16. [16]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    17. [17]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    18. [18]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    19. [19]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    20. [20]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

Metrics
  • PDF Downloads(0)
  • Abstract views(637)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return