Citation:
John N. Myers, Zhan Chen. Surface plasma treatment effects on the molecular structure at polyimide/air and buried polyimide/epoxy interfaces[J]. Chinese Chemical Letters,
;2015, 26(4): 449-454.
doi:
10.1016/j.cclet.2015.01.016
-
Polyimides are widely used as chip passivation layers and organic substrates in microelectronic packaging. Plasma treatment has been used to enhance the interfacial properties of polyimides, but its molecularmechanism is not clear. In this research, the effects of polyimide surface plasma treatment on the molecular structures at corresponding polyimide/air and buried polyimide/epoxy interfaces were investigated in situ using sum frequency generation (SFG) vibrational spectroscopy. SFG results show that the polyimide backbone molecular structure was different at polyimide/air and polyimide/epoxy interfaces before and after plasma treatment. The different molecular structures at each interface indicate that structural reordering of the polyimide backbone occurred as a result of plasma treatment and contact with the epoxy adhesive. Furthermore, quantitative orientation analysis indicated that plasma treatment of polyimide surfaces altered the twist angle of the polyimide backbone at corresponding buried polyimide/epoxy interfaces. These SFG results indicate that plasma treatment of polymer surfaces can alter the molecular structure at corresponding polymer/air and buried polymer interfaces.
-
-
-
[1]
[1] V.K. Khanna, Adhesion-delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices, J. Phys. Appl. Phys. 44 (2011) 034004.
-
[2]
[2] S. Luo, C.P. Wong, Influence of temperature and humidity on adhesion of underfills for flip chip packaging, IEEE Trans. Compon. Packag. Technol. 28 (2005) 88-94.
-
[3]
[3] S.J. Luo, C.P. Wong, Effect of UV/ozone treatment on surface tension and adhesion in electronic packaging, IEEE Trans. Compon. Packag. Technol. 24 (2001) 43-49.
-
[4]
[4] P. Hoontrakul, L.H. Sperling, R.A. Pearson, Understanding the strength of epoxy- polyimide interfaces for flip-chip packages, IEEE Trans. Device Mater. Reliab. 3 (2003) 159-166.
-
[5]
[5] F. Awaja, M. Gilbert, G. Kelly, B. Fox, P.J. Pigram, Adhesion of polymers, Prog. Polym. Sci. 34 (2009) 948-968.
-
[6]
[6] Z. Chen, Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy, Prog. Polym. Sci. 35 (2010) 1376-1402.
-
[7]
[7] C. Zhang, J.N. Myers, Z. Chen, Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy, Soft Matter 9 (2013) 4738-4761.
-
[8]
[8] J.M. Hankett, Y.W. Liu, X.X. Zhang, C. Zhang, Z. Chen, Molecular level studies of polymer behaviors at the water interface using sum frequency generation vibrational spectroscopy, J. Polym. Sci. B: Polym. Phys. 51 (2013) 311-328.
-
[9]
[9] K. Nanjundiah, P.Y. Hsu, A. Dhinojwala, Understanding rubber friction in the presence of water using sum-frequency generation spectroscopy, J. Chem. Phys. 130 (2009) 024702.
-
[10]
[10] C.L. Loch, D. Ahn, Z. Chen, Sum frequency generation vibrational spectroscopic studies on a silane adhesion-promoting mixture at a polymer interface, J. Phys. Chem. B 110 (2006) 914-918.
-
[11]
[11] C.L. Loch, D. Ahn, A.V. Vazquez, Z. Chen, Diffusion of one or more components of a silane adhesion-promoting mixture into poly(methyl methacrylate), J. Colloid Interface Sci. 308 (2007) 170-175.
-
[12]
[12] A.V. Va´zquez, A.P. Boughton, N.E. Shephard, S.M. Rhodes, Z. Chen, Molecular structures of the buried interfaces between silicone elastomer and silane adhesion promoters probed by sum frequency generation vibrational spectroscopy and molecular dynamics simulations, ACS Appl. Mater. Interfaces 2 (2010) 96-103.
-
[13]
[13] C. Zhang, J.N. Myers, Z. Chen, Molecular behavior at buried epoxy/poly(ethylene terephthalate) interface, Langmuir 30 (2014) 12541-12550.
-
[14]
[14] C. Zhang, Z. Chen, Quantitative molecular level understanding of ethoxysilane at poly(dimethylsiloxane)/polymer interfaces, Langmuir 29 (2013) 610-619.
-
[15]
[15] J.N. Myers, C. Zhang, K.W. Lee, J. Williamson, Z. Chen, Hygrothermal aging effects on buried molecular structures at epoxy interfaces, Langmuir 30 (2014) 165-171.
-
[16]
[16] X. Zhang, J.N. Myers, J.D. Bielefeld, Q. Lin, Z. Chen, In situ observation of water behavior at the surface and buried interface of a low-K dielectric film, ACS Appl. Mater. Interfaces 6 (2014) 18951-18961.
-
[17]
[17] A. Kurian, S. Prasad, A. Dhinojwala, Direct measurement of acid-base interaction energy at solid interfaces, Langmuir 26 (2010) 17804-17807.
-
[18]
[18] Y. Fang, B.L. Li, J.C. Yu, et al., Probing surface and interfacial molecular structures of a rubbery adhesion promoter using sum frequency generation vibrational spectroscopy, Surf. Sci. 615 (2013) 26-32.
-
[19]
[19] S. Onard, I. Martin, J.-F. Chailan, A. Crespy, P. Carriere, Nanostructuration in thin epoxy-amine films inducing controlled specific phase etherification: effect on the glass transition temperatures, Macromolecules 44 (2011) 3485-3493.
-
[20]
[20] W.-T. Liu, Y.R. Shen, In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 1293-1297.
-
[21]
[21] J. Sung, G.A. Waychunas, Y.R. Shen, Surface-induced anisotropic orientations of interfacial ethanol molecules at air/sapphire (1 ˉ1 0 2) and ethanol/sapphire (1 ˉ1 0 2) interfaces, J. Phys. Chem. Lett. 2 (2011) 1831-1835.
-
[22]
[22] C.M. Thompson, L.M. Carl, G.A. Somorjai, Sum frequency generation study of the interfacial layer in liquid-phase heterogeneously catalyzed oxidation of 2-propanol on platinum: effect of the concentrations of water and 2-propanol at the interface, J. Phys. Chem. C 117 (2013) 26077-26083.
-
[23]
[23] H. Wang, A. Sapi, C.M. Thompson, et al., Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles, J. Am. Chem. Soc. 136 (2014) 10515-10520.
-
[24]
[24] S.J. Ye, H.C. Li, W.L. Yang, Y. Luo, Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals, J. Am. Chem. Soc. 136 (2014) 1206-1209.
-
[25]
[25] F. Wei, H.C. Li, S.J. Ye, Specific ion interaction dominates over hydrophobic matching effects in peptide-lipid bilayer interactions: the case of short peptide, J. Phys. Chem. C 117 (2013) 26190-26196.
-
[26]
[26] X.L. Lu, B.L. Li, P.Z. Zhu, G. Xue, D.W. Li, Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy, Soft Matter 10 (2014) 5390-5397.
-
[27]
[27] X.L. Lu, J.N. Myers, Z. Chen, Molecular ordering of phenyl groups at the buried polystyrene/metal interface, Langmuir 30 (2014) 9418-9422.
-
[28]
[28] Q.F. Li, C.W. Kuo, Z. Yang, P.L. Chen, K.C. Chou, Surface-enhanced IR-visible sum frequency generation vibrational spectroscopy, Phys. Chem. Chem. Phys. 11 (2009) 3436-3442.
-
[29]
[29] Q.F. Li, R. Hua, K.C. Chou, Electronic and conformational properties of the conjugated polymer MEH-PPV at a buried film/solid interface investigated by two-dimensional IR-visible sum frequency generation, J. Phys. Chem. B 112 (2008) 2315-2318.
-
[30]
[30] J.N. Myers, C. Zhang, C.Y. Chen, Z. Chen, Influence of casting solvent on phenyl ordering at the surface of spin cast polymer thin films, J. Colloid Interface Sci. 423 (2014) 60-66.
-
[31]
[31] J. Wang, C.Y. Chen, S.M. Buck, Z. Chen, Molecular chemical structure on poly(- methyl methacrylate) (PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy, J. Phys. Chem. B 105 (2001) 12118-12125.
-
[32]
[32] K. Ha, J.L. West, Studies on the photodegradation of polarized UV-exposed PMDAODA polyimide films, J. Appl. Polym. Sci. 86 (2002) 3072-3077.
-
[33]
[33] W.S. Li, Z.X. Shen, J.Z. Zheng, S.H. Tang, FT-IR study of the imidization process of photosensitive polyimide PMDA/ODA, Appl. Spectrosc. 52 (1998) 985-989.
-
[34]
[34] D. Kim, Y.R. Shen, Study of wet treatment of polyimide by sum-frequency vibrational spectroscopy, Appl. Phys. Lett. 74 (1999) 3314-3316.
-
[35]
[35] D. Kim, M. Oh-E, Y.R. Shen, Rubbed polyimide surface studied by sum-frequency vibrational spectroscopy, Macromolecules 34 (2001) 9125-9129.
-
[36]
[36] J. Sung, D. Kim, C.N. Whang, M. Oh-E, H. Yokoyama, Sum-frequency vibrational spectroscopic study of polyimide surfaces made by spin coating and ionized cluster beam deposition, J. Phys. Chem. B 108 (2004) 10991-10996.
-
[37]
[37] M. Oh-E, H. Yokoyama, D. Kim, Mapping molecular conformation and orientation of polyimide surfaces for homeotropicliquid crystal alignment by nonlinear optical spectroscopy, Phys. Rev. E 69 (2004) 051705.
-
[38]
[38] A.G. Lambert, P.B. Davies, D.J. Neivandt, Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review, Appl. Spectrosc. Rev. 40 (2005) 103-145.
-
[39]
[39] D. Wolany, T. Fladung, L. Duda, et al., Combined ToF-SIMS/XPS study of plasma modification and metallization of polyimide, Surf. Interface Anal. 27 (1999) 609-617.
-
[40]
[40] S.H. Kim, S.W. Na, N.E. Lee, Y.W. Nam, Y.H. Kim, Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma, Surf. Coat. Technol. 200 (2005) 2072-2079.
-
[41]
[41] Y.S. Lin, H.M. Liu, H.T. Chen, Surface modification of polyimide films by argon plasma for copper metallization on microelectronic flex substrates, J. Appl. Polym. Sci. 99 (2006) 744-755.
-
[42]
[42] K.W. Lee, S.P. Kowalczyk, J.M. Shaw, Surface modification of PMDA-oxydianiline polyimide. Surface structure-adhesion relationship, Macromolecules 23 (1990) 2097-2100.
-
[43]
[43] P. Hoontrakul, R.A. Pearson, Surface reactivity of polyimide and its effect on adhesion to epoxy, J. Adhes. Sci. Technol. 20 (2006) 1905-1928.
-
[1]
-
-
-
[1]
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
-
[2]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[3]
Yukun Xing , Xiaoyu Xie , Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006
-
[4]
Chunyang Zheng , Shiyu Liu , Nuo Yi , Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085
-
[5]
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
-
[6]
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
-
[7]
Manyu Zhu , Fei Liang , Lie Wu , Zihao Li , Chen Wang , Shule Liu , Xiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962
-
[8]
Ruotong Wei , Aokun Liu , Jian Kuang , Zhiwen Wang , Lu Yu , Changlin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029
-
[9]
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
-
[10]
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
-
[11]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[12]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[13]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[14]
Yanwei Duan , Qing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905
-
[15]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[16]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[17]
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
-
[18]
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
-
[19]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[20]
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(637)
- HTML views(9)