Citation:
Jian-Hong Gan, Chang-Hua Xu, Hong-Zhe Zhu, Fang Mao, Fan Yang, Qun Zhou, Su-Qin Sun. Analysis and discrimination of ten different sponges by multi-step infrared spectroscopy[J]. Chinese Chemical Letters,
;2015, 26(2): 215-220.
doi:
10.1016/j.cclet.2015.01.012
-
In this study, a convenient method using multi-step infrared spectroscopy, including Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was employed to analyze and discriminate ten marine sponges from two classes collected from the Xisha Islands in the South China Sea. Each sponge had an exclusive macroscopic fingerprint. From the IR spectra, it was noted that the main ingredient of calcareous sponges was calciumcarbonate, but that of demosponges was proteins. For sponges from the same genus or having highly similar chemical profile (IR spectral profile), SD-IR and 2DCOS-IR were applied to successfully reveal the tiny differences. It was demonstrated that the multi-step infrared spectroscopy was a feasible and objective approach for marine sponge identification.
-
-
-
[1]
[1] J.N.A. Hooper, Coral reef sponges of the Sahul shelf-a case for habitat preservation, Mem. Qld. Mus. 36 (1994) 93-106.
-
[2]
[2] I. Hermawan, N.J. de Voogd, J. Tanaka, An acetylenic alkaloid from the calcareous sponge Leucetta sp., Mar. Drugs 9 (2011) 382-386.
-
[3]
[3] J.W. Blunt, B.R. Copp, W.P. Hu, et al., Marine natural products, Natl. Prod. Rep. 26 (2009) 170-244.
-
[4]
[4] J.B. McClintock, B.J. Baker, Marine Chemical Ecology, CRC Press, New York, 2001.
-
[5]
[5] H.X. Ding, L.C. Da, R.C. Yang, et al., First total synthesis of a naturally occurring nucleoside disulfide: 9-(50-deoxy-50-thio-b-D-xylofuranosyl)adenine disulfide, Chin. Chem. Lett. 23 (2012) 996-998.
-
[6]
[6] P. Botting, L.A. Muir, S.H. Xiao, X.F. Li, J.P. Lin, Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China, Lethaia 45 (2012) 463-475.
-
[7]
[7] S.Q. Sun, Q. Zhou, J.B. Chen, Infrared Spectroscopy for Complex Mixtures: Applications in Food and Traditional Chinese Medicine, Chemical Industry Press, Beijing, 2011.
-
[8]
[8] H.Y. Fu, D.C. Huang, T.M. Yang, Y.B. She, H. Zhang, Rapid recognition of Chinese herbal pieces of Areca catechu by different concocted processes using Fourier transformmid-infrared spectroscopy and near-infrared spectroscopy combined with partial least-squares discriminant analysis, Chin. Chem. Lett. 24 (2013) 639-642.
-
[9]
[9] S.Q. Sun, J.B. Chen, Q. Zhou, G.H. Lu, K. Chan, Application of mid-infrared spectroscopy in the quality control of traditional Chinese medicines, Planta Med. 76 (2010) 1987-1996.
-
[10]
[10] C.H. Xu, X.G. Jia, R. Xu, et al., Rapid discrimination of Herba Cistanches by multi-step infrared macro-fingerprinting combined with soft independent modeling of class analogy (SIMCA), Spectrochim. Acta A 114 (2013) 421-431.
-
[11]
[11] Y. Wang, C.H. Xu, P. Wang, et al., Analysis and identification of different animal horns by a three-stage infrared spectroscopy, Spectrochim. Acta A 83 (2011) 265-270.
-
[12]
[12] C.H. Xu, Y. Wang, J.B. Chen, et al., Infrared macro-fingerprint analysis-throughseparation for holographic chemical characterization of herbal medicine, J. Pharm. Biomed. Anal. 74 (2013) 298-307.
-
[13]
[13] J. Kong, S.N. Yu, Fourier transform infrared spectroscopic analysis of protein secondary structures, Acta Biochim. Biophys. Sin. 39 (2007) 549-559.
-
[14]
[14] J.N.A. Hooper, R.W.M. Van Soest, P. Willenz, Systema Porifera. A Guide to the Classification of Sponges, Springer-Verlag, New York, 2002.
-
[15]
[15] J.H. Gan, C.H. Xu, H.B. Yu, et al., Rapid discrimination of china sponges by tri-step infrared spectroscopy: a prelimiary study, J. Mol. Struct. 1069 (2014) 147-151.
-
[16]
[16] I. Noda, Two-dimensional infrared spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8118.
-
[1]
-
-
-
[1]
Manyu Zhu , Fei Liang , Lie Wu , Zihao Li , Chen Wang , Shule Liu , Xiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962
-
[2]
Xuan Zhu , Lin Zhou , Xiao-Yun Huang , Yan-Ling Luo , Xin Deng , Xin Yan , Yan-Juan Wang , Yan Qin , Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272
-
[3]
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
-
[4]
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
-
[5]
Ruotong Wei , Aokun Liu , Jian Kuang , Zhiwen Wang , Lu Yu , Changlin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029
-
[6]
Yuyang Zhou , Ziwang Mao , Jing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622
-
[7]
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
-
[8]
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
-
[9]
Yang Liu , Leilei Zhang , Kaixuan Liu , Ling-Ling Wu , Hai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759
-
[10]
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
-
[11]
Wenqing Deng , Fanfeng Deng , Ting Zhang , Junjie Lin , Liang Zhao , Gang Li , Yi Pan , Jiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085
-
[12]
Hui Peng , Xiao Wang , Weiguo Huang , Shuiyue Yu , Linghang Kong , Qilin Wei , Jialong Zhao , Bingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462
-
[13]
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156
-
[14]
Lei Wang , Jun-Jie Wu , Chang-Cun Yan , Wan-Ying Yang , Zong-Lu Che , Xin-Yu Xia , Xue-Dong Wang , Liang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365
-
[15]
Ying Zhao , Yin-Hang Chai , Tian Chen , Jie Zheng , Ting-Ting Li , Francisco Aznarez , Li-Long Dang , Lu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298
-
[16]
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
-
[17]
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
-
[18]
Fuzheng Zhang , Chao Shi , Jiale Li , Fulin Jia , Xinyu Liu , Feiyang Li , Xinyu Bai , Qiuxia Li , Aihua Yuan , Guohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596
-
[19]
Haowen Shang , Yujie Yang , Bingjie Xue , Yikai Wang , Zhiyi Su , Wenlong Liu , Youzhi Wu , Xinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511
-
[20]
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(614)
- HTML views(0)