Citation: Xin-Fang Xu, Michael P. Doyle. Divergent pathways of β,γ-unsaturated α-diazocarbonyl compounds catalyzed by dirhodium and Lewis acids catalysts separately or in combination[J]. Chinese Chemical Letters, ;2015, 26(2): 227-232. doi: 10.1016/j.cclet.2014.12.014 shu

Divergent pathways of β,γ-unsaturated α-diazocarbonyl compounds catalyzed by dirhodium and Lewis acids catalysts separately or in combination

  • Corresponding author: Xin-Fang Xu, 
  • Received Date: 13 November 2014
    Available Online: 11 December 2014

    Fund Project: MPD is grateful to the National Institutes of Health (No. GM 46503) (No. GM 46503)the National Science Foundation (No. CHE-1212446). XFX is thankful to the starting funding from Soochow University and Key Laboratory of Organic Synthesis of Jiangsu Province. (No. CHE-1212446)

  • β,γ-Unsaturated α-diazocarbonyl compounds possess two reactive sites for electrophilic addition -one at the diazo carbon and the other at the vinylogous g-position. Controlled by catalyst, divergent transformations are achieved starting from the same starting materials, either by Lewis acid-catalyzed addition or by dirhodium-catalyzed metal carbene reactions. In select cases two catalysts working in combination or in sequence provide a relay for cascade transformations. In this review, we summarize advances in catalyst-dependent divergent transformations of β,γ-unsaturated α-diazocarbonyl compounds and highlight the potential of this exciting research area and the many challenges that remain.
  • 加载中
    1. [1]

      [1] (a) M.P. Doyle, M.A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, John Wiley & Sons, New York, 1998; (b) Z. Zhang, J.B. Wang, Recent studies on the reactions of α-diazocarbonyl compounds, Tetrahedron 64 (2008) 6577-6605; (c) D. Xing, W.H. Hu, Recent advances in metal carbenoid mediated nitrogencontaining zwitterionic intermediate trapping process, Tetrahedron Lett. 55 (2014) 777-783.

    2. [2]

      [2] (a) M.P. Doyle, R. Duffy, M.O. Ratnikov, L. Zhou, Catalytic carbene insertion into C-H bonds, Chem. Rev. 110 (2010) 704-724; (b) H.M.L. Davies, D. Morton, Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes, Chem. Soc. Rev. 40 (2011) 1857-1869; (c) Y. Zhang, J. Wang, Recent development of reactions with α-diazocarbonyl compounds as nucleophiles, Chem. Commun. 45 (2009) 5350-5361.

    3. [3]

      [3] (a) M.P. Doyle, Catalytic methods for metal carbene transformations, Chem. Rev. 86 (1986) 919-939; (b) M.P. Doyle, Perspective on dirhodium carboxamidates as catalysts, J. Org. Chem. 71 (2006) 9253-9260; (c) M.P. Doyle, M.N. Protopopova, New aspects of catalytic asymmetric cyclopropanation, Tetrahedron 54 (1998) 7919-7946.

    4. [4]

      [4] (a) M.P. Doyle, M.O. Ratnikov, Y. Liu, Intramolecular catalytic asymmetric carbon-hydrogen insertion reactions. Synthetic advantages in comparison with alternative approaches, Org. Biomol. Chem. 9 (2011) 4007-4016; (b) M.P. Doyle, L. Yu, M.O. Ratnikov, Catalytic, asymmetric, intramolecular carbon-hydrogen insertion, Org. React. 80 (2013) 1-131.

    5. [5]

      [5] (a) X.F. Xu, M.P. Doyle, The [3 + 3]-cycloaddition alternative for heterocycle syntheses: catalytically generated metalloenolcarbenes as dipolar adducts, Acc. Chem. Res. 47 (2014) 1396-1405; (b) X.F. Xu, M.P. Doyle, Recent developments in the synthetic uses of silylprotected enoldiazoacetates for heterocyclic syntheses, Aust. J. Chem. 67 (2014) 365-373.

    6. [6]

      [6] (a) H.M.L. Davies, Y. Lian, The combined C-H functionalization/Cope rearrangement: discovery and applications in organic synthesis, Acc. Chem. Res. 45 (2012) 923-935; (b) H.M.L. Davies, J.S. Alford, Reactions of metallocarbenes derived from N-sulfonyl-1,2,3-triazoles, Chem. Soc. Rev. 43 (2014) 5151-5162; (c) C. Qin, H.M.L. Davies, Role of sterically demanding chiral dirhodium catalysts in site-selective C-H functionalization of activated primary C-H bonds, J. Am. Chem. Soc. 136 (2014) 9792-9796.

    7. [7]

      [7] S. Chuprakov, B.T. Worrell, N. Selander, R.K. Sit, V.V. Fokin, Stereoselective 1,3-insertions of rhodium(II) azavinyl carbenes, J. Am. Chem. Soc. 136 (2014) 195-202.

    8. [8]

      [8] S.F. Zhu, Q.L. Zhou, Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions, Acc. Chem. Res. 45 (2012) 1365-1377.

    9. [9]

      [9] X. Guo, W.H. Hu, Novel multicomponent reactions via trapping of protic onium ylides with electrophiles, Acc. Chem. Res. 46 (2013) 2427-2440.

    10. [10]

      [10] (a) X. Cui, X.P. Zhang, Cobalt-Mediated Carbene Transfer Reactions, John Wiley & Sons, New Jersey, 2014, pp. 491-525 (Chapter 15); (b) H. Pellissier, H. Clavier, Enantioselective cobalt-catalyzed transformations, Chem. Rev. 114 (2014) 2775-2823; (c) M.P. Doyle, Exceptional selectivity in cyclopropanation reactions catalyzed by chiral cobalt(II) porphyrins, Angew. Chem. Int. Ed. 48 (2009) 850-852.

    11. [11]

      [11] (a) Q. Xiao, Y. Zhang, J.B. Wang, Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions, Acc. Chem. Res. 46 (2013) 236-247; (b) X. Zhao, Y. Zhang, J.B. Wang, Recent developments in copper-catalyzed reactions of diazo compounds, Chem. Commun. 48 (2012) 10162-10173; (c) F. Ye, M.L. Hossain, Y. Xu, et al., Synthesis of allyl allenes through threecomponent cross-coupling reaction of N-tosylhydrazones, terminal alkynes and allyl halides, Chem. Asian J. 8 (2013) 1404-1407.

    12. [12]

      [12] A.M. Dumas, J.W. Bode, J. Mahatthananchai, Catalytic selective synthesis, Angew. Chem. Int. Ed. 51 (2012) 10954-10990.

    13. [13]

      [13] (a) H.X. Dai, A.F. Stepan, M.S. Plummer, Y.H. Zhang, J.Q. Yu, Divergent C-H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery, J. Am. Chem. Soc. 133 (2011) 7228; (b) N.D. Jabre, T. Respondek, S.A. Ulku, N. Korostelova, J.J. Kodanko, A divergent strategy for attaching polypyridyl ligands to peptides, J. Org. Chem. 75 (2010) 650-659; (c) P.D. Pohlhaus, R.K. Bowman, J.S. Johnson, Lewis acid-promoted carbon-carbon bond cleavage of aziridines: divergent cycloaddition pathways of the derived ylides, J. Am. Chem. Soc. 126 (2004) 2294-2295; (d) V. Percec, B. Barboiu, C. Grigoras, T.K. Bera, Universal iterative strategy for the divergent synthesis of dendritic macromolecules from conventional monomers by a combination of living radical polymerization and irreversible TERminator multifunctional INItiator (TERMINI), J. Am. Chem. Soc. 125 (2003) 6503-6516.

    14. [14]

      [14] (a) H. Mizoguchi, H. Oguri, K. Tsug, H. Oikawa, Divergent and expeditious access to fused skeletons inspired by indole alkaloids and transtaganolides, Org. Lett. 11 (2009) 3016-3019; (b) S.H. Medina, M.E.H. El-Sayed, Dendrimers as carriers for delivery of chemotherapeutic agents, Chem. Rev. 109 (2009) 3141-3157; (c) K.W. Wang, D.X. Xiang, J.Y. Liu, W. Pan, D.W. Dong, Efficient and divergent synthesis of fully substituted 1H-pyrazoles and isoxazoles from cyclopropyl oximes, Org. Lett. 10 (2008) 1691-1694; (d) B. Delest, P. Nshimyumukiza, O. Fasbender, et al., Divergent and regioselective synthesis of 1,2,4-and 1,2,5-trisubstituted imidazoles, J. Org. Chem. 73 (2008) 6816-6823.

    15. [15]

      [15] (a) M.T. Whited, R.H. Grubbs, Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M5C bond reactivity, Acc. Chem. Res. 42 (2009) 1607-1616; (b) G.Z. Zhang, V.J. Catalano, L.M. Zhang, PtCl2-catalyzed rapid access to tetracyclic 2,3-indoline-fused cyclopentenes: reactivity divergent from cationic Au(I) catalysis and synthetic potential, J. Am. Chem. Soc. 129 (2007) 11358-11359; (c) M. Lautens, W. Han, Divergent selectivity in MgI2-mediated ring expansions of methylenecyclopropyl amides and imides, J. Am. Chem. Soc. 124 (2002) 6312-6316.

    16. [16]

      [16] (a) E. Soriano, J. Marco-Contelles, Mechanistic insights on the cycloisomerization of polyunsaturated precursors catalyzed by platinum and gold complexes, Acc. Chem. Res. 42 (2009) 1026-1036; (b) P. Panne, J.M. Fox, Rh-catalyzed intermolecular reactions of alkynes with adiazoesters that possess b-hydrogens: ligand-based control over divergent pathways, J. Am. Chem. Soc. 129 (2007) 22-23; (c) K. Tanaka, G.C. Fu, Parallel kinetic resolution of 4-alkynals catalyzed by Rh(I)/ Tol-BINAP: synthesis of enantioenriched cyclobutanones and cyclopentenones, J. Am. Chem. Soc. 125 (2003) 8078-8079.

    17. [17]

      [17] (a) A. Padwa, D.J. Austin, A.T. Price, et al., Ligand effects on dirhodium(II) carbene reactivities. Highly effective switching between competitive carbenoid transformations, J. Am. Chem. Soc. 115 (1993) 8669-8680; (b) D. Bykowski, W.K. Wu, M.P. Doyle, Vinyldiazolactone as a vinylcarbene precursor: highly selective C-H insertion and cyclopropanation reactions, J. Am. Chem. Soc. 128 (2006) 16038-16039; (c) H.M.L. Davies, M.G. Coleman, D.L. Ventura, Balance between allylic C-H activation and cyclopropanation in the reactions of donor/acceptor-substituted rhodium carbenoids with trans-alkenes, Org. Lett. 9 (2007) 4971-4974; (d) M.P. Doyle, M.N. Protopopova, C.D. Poulter, D.H. Rogers, Macrocyclic lactones from dirhodium(II)-catalyzed intramolecular cyclopropanation and carbon-hydrogen insertion, J. Am. Chem. Soc. 117 (1995) 7281-7282; (e) M.P. Doyle, M.N. Protopopova, C.S. Peterson, J.P. Vitale, M.A. McKervey, C.F. Garcia, Formation of macrocycles by catalytic intramolecular aromatic cycloaddition of metal carbenes to remote arenes, J. Am. Chem. Soc. 118 (1996) 7865-7866; (f) M.P. Doyle, C.S. Peterson, M.N. Protopopova, et al., Macrocycle formation by catalytic intramolecular cyclopropanation. a new general methodology for the synthesis of macrolides, J. Am. Chem. Soc. 119 (1997) 8826-8837.

    18. [18]

      [18] M.P. Doyle, M. Yan, W.H. Hu, L.S. Gronenberg, Highly selective catalyst-directed pathways to dihydropyrroles from vinyldiazoacetates and imines, J. Am. Chem. Soc. 125 (2003) 4692-4693.

    19. [19]

      [19] M. Yan, N. Jacobsen, W.H. Hu, et al., Stereoselective synthesis of bicyclic pyrrolidines by a rhodium-catalyzed cascade process, Angew. Chem. Int. Ed. 43 (2004) 6713-6716.

    20. [20]

      [20] (a) M.P. Sibi, G.R. Cook, Copper Lewis acids in organic synthesis, in: Lewis Acids in Organic Synthesis, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2000; (b) T.G. Moga, Counting on copper, Nat. Chem. 4 (2012) 334.

    21. [21]

      [21] W. Kirmse, Copper carbene complexes: advanced catalysts, new insights, Angew. Chem. Int. Ed. 42 (2003) 1088-1093.

    22. [22]

      [22] (a) M.P. Doyle, I.M. Phillips, W.H. Hu, A new class of chiral Lewis acid catalysts for highly enantioselective hetero-diels-alder reactions: exceptionally high turnover numbers from dirhodium(II) carboxamidates, J. Am. Chem. Soc. 123 (2001) 5366-5367; (b) Y. Wang, J. Wolf, P. Zavalij, M.P. Doyle, Cationic chiral dirhodium carboxamidates are activated for Lewis acid catalysis, Angew. Chem. Int. Ed. 47 (2008) 1439-1442.

    23. [23]

      [23] X.C. Wang, X.F. Xu, P.Y. Zavalij, M.P. Doyle, Asymmeric formal [3 + 3]-cycloaddition reactions of nitrones with electrophilic vinylcarbene intermediates, J. Am. Chem. Soc. 133 (2011) 16402-16405.

    24. [24]

      [24] Y. Qian, X.F. Xu, X.C. Wang, et al., Rhodium(II)-and copper(II)-catalyzed reactions of enol diazoacetates with nitrones: metal carbene versus Lewis acid directed pathways, Angew. Chem. Int. Ed. 51 (2012) 5900-5903.

  • 加载中
    1. [1]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    2. [2]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    3. [3]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    4. [4]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    5. [5]

      Qunlong ZhangJingyi KangJingwen WangTiancheng TanZhaoyong Lu . Divergent total synthesis of sesquiterpene (hydro)quinone meroterpenoids dysideanones A and E–G. Chinese Chemical Letters, 2025, 36(3): 109915-. doi: 10.1016/j.cclet.2024.109915

    6. [6]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    7. [7]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    8. [8]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    9. [9]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    10. [10]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    11. [11]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    12. [12]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    13. [13]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    14. [14]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    15. [15]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    16. [16]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    17. [17]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    18. [18]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    19. [19]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    20. [20]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

Metrics
  • PDF Downloads(0)
  • Abstract views(674)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return