Citation:
Akbar Mobinikhaledi, Hassan Moghanian, Samira Pakdel. Microwave-assisted effi cient synthesis of azlactone derivatives using 2-aminopyridine-functionalized sphere SiO2 nanoparticles as a reusable heterogeneous catalyst[J]. Chinese Chemical Letters,
;2015, 26(5): 557-563.
doi:
10.1016/j.cclet.2014.12.007
-
In the present work, the highly efficient Erlenmeyer synthesis of azlactones catalyzed by 2- aminopyridine, supported on nano-sphere SiO2 is reported. First, the silica nanoparticles were modified with triethoxysilylpropyl chloride and then 2-aminopyridine was attached to the support via covalent linkages. This new heterogenized catalyst was used for efficient microwave-assisted synthesis of azlactone derivatives with Ac2O as a condensing agent under solvent-free conditions. The present method offers advantages including high yields, short reaction times and simple work-up. Also, the catalyst can be easily recycled and reused several times, which makes this method attractive, economic and environmentally-benign.
-
-
-
[1]
[1] K. Takenaka, T. Tsuji, Synthesis of [1,3,4]thiadiazolo[3,2-a]pyrimidines in the presence of formic acid, J. Heterocyclic. Chem. 33 (1996) 1367-1370.
-
[2]
[2] S. Paul, P. Nanda, R. Gupta, A. Loupy, Calcium acetate catalyzed synthesis of 4- arylidene-2-phenyl-5(4H)-oxazolones under solvent-free conditions, Tetrahedron Lett. 45 (2004) 425-427.
-
[3]
[3] K. Mohammed Khan, M.R. Mughal, M.T. Hassan Khan, et al., Oxazolones: new tyrosinase inhibitors; synthesis and their structure-activity relationships, Bioorg. Med. Chem. 14 (2006) 6027-6033.
-
[4]
[4] J.T. Konkel, J. Fan, B. Jayachandran, K.L. Kirk, Syntheses of 6-fluorometa-tyrosine and of its metabolites, J. Flouorine Chem. 115 (2002) 27-32.
-
[5]
[5] S. Chandrasekhar, P. Karri, Aromaticity in azlactone anions and its significance for the Erlenmeyer synthesis, Tetrahedron Lett. 47 (2006) 5763-5766.
-
[6]
[6] F. Cavalier, J. Verducci, New synthesis of the cyclic tetrapeptide tentoxin employing an azlactone as key intermediate, Tetrahedron Lett. 36 (1995) 4425-4428.
-
[7]
[7] A. Avenoza, J.H. Busto, C. Cativiela, J.M. Peregrina, Reactivity of (Z)-4-arylidene- 5(4H)-oxazolones: [4 + 2] cycloaddition versus [4 + 3] cycloaddition/nucleophilic trapping, Tetrahedron Lett. 43 (2002) 4167-4170.
-
[8]
[8] G.T. Hermanson, G.R. Mattson, R.I. Krohn, Preparation and use of immunoglobulin- binding affinity supports on Emphaze beads, J. Chromatogr. A 691 (1995) 113- 122.
-
[9]
[9] E. Etschenberg, H. Jacobi, W. Opitz, Ger. Pat., 904512 (1980).
-
[10]
[10] C. Sanchez, C. Mendez, J.A. Salas, Indolocarbazole natural products: occurrence, biosynthesis, and biological activity, Nat. Prod. Rep. 23 (2006) 1007-1045.
-
[11]
[11] S.A. Siddiqui, S.R. Bhusare, D.V. Jarikote, R.P. Pawar, Y.B. Vibhute, New novel synthesis and antibacterial activity of 1-(substituted phenyl)-2-phenyl-4-(3'- halo, 4'-hydroxy 5'-methoxy benzylidene)-imidazole-5-ones, Bull. Korean Chem. Soc. 22 (2001) 1033-1036.
-
[12]
[12] U. Salgın-Goksen, N. Gö khan-Kelekci, O. Goktas, et al., 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5- methyl-2-benzoxazolinones: synthesis, analgesic-anti-inflammatory and antimicrobial activities, Bioorg. Med. Chem. 15 (2007) 5738-5751.
-
[13]
[13] K. Urano, Y. Tornioka, K. Okubo, K. Yarnazaki, A. Nagamatsu, Preparation of 4-[(alkylamino)alkylidene]-2-phenyl-2-oxazolin-5-ones, Jpn. Kokai Tokkyo Koho JP 01 29369 189 29, 3691, (1989).
-
[14]
[14] E. Erlenmeyer, Ueber die condensation der hippursäure mit phtalsäureanhydrid und mit benzaldehyd, Annalen 275 (1893) 1-8.
-
[15]
[15] G.V. Boyd, P.H. Wright, Cyclisation of α-acylamino-acids in the presence of perchloric acid to give 5-oxo-△2-oxazolinium perchlorates, J. Chem. Soc., Perkin Trans. 1 (1972) 909-913.
-
[16]
[16] Y.S. Rao, Reactions in polyphosphoric acid. I. New stereospecific synthesis of the E isomers of 2-phenyl-4-arylmethylene-2-oxazolin-5-ones, J. Org. Chem. 41 (1976) 722-725.
-
[17]
[17] J. Kashyap, A.B. Chetry, P.J. Das, Synthesis of 4-arylidene-2-phenyloxazol-5-ones using 1:1 mixture of Al2O3-H3BO3, Synth. Commun. 28 (1998) 4178-4191.
-
[18]
[18] F.M. Bautista, J.M. Campelo, A. García, et al., Study on dry-media microwave azalactone synthesis on different supported KF catalysts: influence of textural and acid-base properties of supports, J. Chem. Soc., Perkin Trans. 2 (2002) 227- 234.
-
[19]
[19] K.A. Monk, D. Sarapa, R.S. Mohan, Bismuth (III) acetate: a new catalyst for preparation of azlactones via the Erlenmeyer synthesis, Synth. Commun. 30 (2000) 3167-3170.
-
[20]
[20] M.M. Khodaei, A.R. Khosropour, S.J.H. Jomor, Efficient and chemoselective conversion of aryl aldehydes to their azalactones catalysed by Bi(III) salts under solvent free conditions, J. Chem. Res. Synop. (2003) 638-641.
-
[21]
[21] P.S. Rao, R.V. Venkataratnam, Anhydrous zinc chloride catalyzed synthesis of 2- phenyl-4-arylidene-5(4H)-oxazolones, Indian J. Chem. Sect. 33B (10) (1994) 984- 985.
-
[22]
[22] C. Yu, B. Zhou, W. Su, Z. Xu, Erlenmeyer synthesis for azlactones catalyzed by ytterbium(III) triflate under solvent-free conditions, Synth. Commun. 36 (2006) 3447-3453.
-
[23]
[23] P.A. Conway, K. Devine, F. Paradisi, A simple and efficient method for the synthesis of Erlenmeyer azlactones, Tetrahedron 65 (2009) 2935-2938.
-
[24]
[24] A.R. Khosropour, M.M. Khodaei, S.J. Hoseini Jomor, A new, efficient and chemoselective one-pot protocol for synthesis of 4-arylidene-2-phenyl-5(4H)-oxazolones from aryl aldehyde bisulfite adducts promoted by POCl3, J. Heterocycl. Chem. 45 (2008) 683-686.
-
[25]
[25] M. Rostami, A.R. Khosropour, V. Mirkhani, et al., [C6(MIm)2]2W10O32. 2H2O:a novel and powerful catalyst for the synthesis of 4-arylidene-2-phenyl-5(4)- oxazolones under ultrasonic condition, C. R. Chim. 14 (2011) 869-877.
-
[26]
[26] B. Samani Ghaleh Taki, V. Mirkhani, I. Mohammadpoor-Baltork, et al., Synthesis and characterization of nano silica supported tungstophosphoric acid: an efficient, reusable heterogeneous catalyst for the synthesis of azlactones, J. Inorg. Organomet. Polym. 23 (2013) 758-765.
-
[27]
[27] H. Moghanian, M. Shabanian, H. Jafari, Microwave-assisted efficient synthesis of azlactone derivatives using TsCl/DMF under solvent-free conditions, C. R. Chim. 15 (2012) 346-349.
-
[28]
[28] O. Lanitou, D. Dimotikali, E. Yannakopoulou, K. Papadopoulos, Studies on the catalytic activity of novel hybridized chiral organo-inorganic catalysts for epoxidation and alkylation reactions, Chem. Eng. J. 134 (2007) 72-77.
-
[29]
[29] H. Paul, S. Basu, S. Bhaduri, G.K. Lahiri, Platinum carbonyl derived catalysts on inorganic and organic supports: a comparative study, J. Organomet. Chem. 689 (2004) 309-316.
-
[30]
[30] K. Motokura, N. Viswanadham, G. Murali Dhar, Y. Iwasawa, Creation of acid-base bifunctional catalysis for efficient C-C coupling reactions by amines immobilization on SiO2, silica-alumina, and nano-H-ZSM-5, Catal. Today 141 (2009) 19-24.
-
[31]
[31] S. Huh, H.T. Chen, J.W. Wiench, M. Pruski, V.S.Y. Lin, Cooperative catalysis by general acid and base bifunctionalized mesoporous silica nanospheres, Angew. Chem. Int. Ed. 44 (2005) 1826-1830.
-
[32]
[32] X.Y. Shi, J.F. Wei, Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide, J. Mol. Catal. A: Chem. 280 (2008) 142-147.
-
[33]
[33] D. Brunel, Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals, Microporous Mesoporous Mater. 27 (1999) 329- 344.
-
[34]
[34] M.E. Chimienti, L.R. Pizzio, C.V. Cáceres, M.N. Blanco, Tungstophosphoric and tungstosilicic acids on carbon as acidic catalysts, Appl. Catal. A: Gen. 208 (2001) 7-19.
-
[35]
[35] Y. Kamiya, T. Okuhara, M. Misono, et al., Catalytic chemistry of supported heteropolyacids and their applications as solid acids to industrial processes, Catal. Surv. Asia 12 (2008) 101-113.
-
[36]
[36] V.M. Joshi, R.L. Magar, P.B. Throat, et al., Novel one-pot synthesis of 4H-chromene derivatives using amino functionalized silica gel catalyst, Chin. Chem. Lett. 25 (2014) 455-458.
-
[37]
[37] X. Shen, Y. Zhai, Y. Sun, H. Gu, Preparation of monodisperse spherical SiO2 by microwave hydro-thermal method and kinetics of dehydrated hydroxyl, J. Mater. Sci. Technol. 26 (2010) 711-714.
-
[38]
[38] A. Saffar-Teluri, Boron trifluoride supported on nano-SiO2: an efficient and reusable heterogeneous catalyst for the synthesis of bis(indolyl)methanes and oxindole derivatives, Res. Chem. Intermed. 40 (2014) 1061-1067.
-
[39]
[39] J. Safaei-Ghomi, R. Teymuri, H. Shahbazi-Alavi, A. Ziarati, SnCl2/nano SiO2: a green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4Hpyrans, Chin. Chem. Lett. 24 (2013) 921-925.
-
[40]
[40] B.F. Mirjalili, A. Bamoniri, M.A. Mirhoseini, Nano-SnCl4·SiO2 - a versatile and efficient catalyst for synthesis of 14-aryl- or 14-alkyl-14H-dibenzo[a,j]xanthenes, Chem. Heterocycl. Compd. 48 (2012) 856-860.
-
[41]
[41] Q. Zhang, Z. Ye, S.T. Wang, J. Yin, Facile one-pot synthesis of PEGylated monodisperse mesoporous silica nanoparticles with controllable particle sizes, Chin. Chem. Lett. 25 (2014) 257-260.
-
[42]
[42] N. Foroughifar, A. Mobinikhaledi, H. Moghanian, A straightforward and efficient catalyst-free one-pot synthesisof N-acyl-1, 3-diaryl-2-azaphenalene derivatives via multicomponent reactions, Chem. Lett. 39 (2010) 180-181.
-
[43]
[43] A. Mobinikhaledi, H. Moghanian, M. Deinavizadeh, pTSA-catalyzed condensation of xylenols and aldehydes under solvent-free conditions: one-pot synthesis of 9H-xanthene or bisphenol derivatives, C. R. Chim. 16 (2013) 1035-1041.
-
[44]
[44] H. Moghanian, A. Mobinikhaledi, A.G. Blackman, E. Sarough-Farahani, Sulfanilic acid-functionalized silica-coated magnetite nanoparticles as an efficient, reusable and magnetically separable catalyst for the solvent-free synthesis of 1-amidoand 1-aminoalkyl-2-naphthols, RSC Adv. 4 (2014) 28176-28185.
-
[45]
[45] M.A. Nasseri, M. Sadeghzadeh, Multi-component reaction on free nano-SiO2 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability, J. Chem. Sci. 125 (2013) 537-544.
-
[46]
[46] T. Zeng, L. Yang, R. Hudson, et al., Fe3O4 nanoparticle-supported copper(I) pybox catalyst: magnetically recoverable catalyst for enantioselective direct-addition of terminal alkynes to imines, Org. Lett. 13 (2011) 442-445.
-
[47]
[47] F. Adam, K. Mohammed Hello, H. Osman, Esterification via saccharine mediated silica solid catalyst, Appl. Catal. A: Gen. 365 (2009) 165-172.
-
[48]
[48] K.A. Yeboah, J.D. Boyd, K.A. Kyeremateng, et al., Large accelerations from small thermal differences: case studies and conventional reproduction of microwave effects on palladium couplings, Reac. Kinet. Mech. Cat. 112 (2014) 295-304.
-
[49]
[49] M. Rostami, A. Khosropour, V. Mirkhani, et al., Organic-inorganic hybrid polyoxometalates: efficient, heterogeneous and reusable catalysts for solvent-free synthesis of azlactones, Appl. Catal. A: Gen. 397 (2011) 27-34.
-
[50]
[50] B.R. Madje, M.B. Ubale, J.V. Bharad, M.S. Shingare, Alum an efficient catalyst for Erlenmeyer synthesis, S. Afr. J. Chem. 63 (2010) 158-161.
-
[51]
[51] H.C. Song, Y.F. Sun, W.M. Li, et al., Second nonlinear polarizability of 4-substituted- benzylideneoxazol-5(4H)-ones and 9-substituted-phenylacridines, Acta Chim. Sinica 59 (2001) 1563-1565.
-
[52]
[52] S.G. Patil, R.R. Bagul, V.M. Kamble, V.A. Navale, A green protocol for Erlenmeyer Plö chl reaction by using [bmIm]OH, J. Chem. Pharm. Res. 3 (2011) 285-290.
-
[53]
[53] J.D. Fissekis, C.G. Skinner, W. Shive, Synthesis and biological activity of some cycloalkaneglyoxylic acids, J. Am. Chem. Soc. 81 (1959) 2715-2718.
-
[54]
[54] T. Cleary, J. Brice, N. Kennedy, F. Chavez, One-pot process to Z-a-benzoylaminoacrylic acid methyl esters via potassium phosphate-catalyzed Erlenmeyer reaction, Tetrahedron Lett. 51 (2010) 625-628.
-
[55]
[55] S. Paul, P. Nanda, R. Gupta, A. Loupy, Ac2O-Py/basic alumina as a versatile reagent for acetylations in solvent-free conditions under microwave irradiation, Tetrahedron Lett. 43 (2002) 4261-4265.
-
[56]
[56] I.C. Ivanov, T.N. Glasnov, D. Heber, Synthesis of 2H-chromeno[4,3-b]pyridine- 2,5(1H)-diones and related heterocycles via the Erlenmeyer-Ploechl reaction, J. Heterocycl. Chem. 42 (2005) 857-861.
-
[57]
[57] G. Romanelli, J.C. Autino, P. Va’zquez, et al., A suitable synthesis of azlactones (4- benzylidene-2-phenyloxazolin-5-ones and 4-alkylidene-2-phenyloxazolin-5- ones) catalyzed by silica-alumina supported heteropolyacids, Appl. Catal. A: Gen. 352 (2009) 208-213.
-
[1]
-
-
-
[1]
Jia-Cheng Hou , Hong-Tao Ji , Yu-Han Lu , Jia-Sheng Wang , Yao-Dan Xu , Yan-Yan Zeng , Wei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514
-
[2]
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
-
[3]
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
-
[4]
Xiaoyu Zhang , Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439
-
[5]
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
-
[6]
Xin He , Feng Liu , Tao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621
-
[7]
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
-
[8]
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
-
[9]
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
-
[10]
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
-
[11]
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
-
[12]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[13]
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756
-
[14]
Qian Wu , Mengda Xu , Tianjiao Ma , Shuzhen Yan , Jin Li , Xuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427
-
[15]
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
-
[16]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[17]
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
-
[18]
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
-
[19]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[20]
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(719)
- HTML views(30)