Citation:
Yan-Sha Gao, Li-Ping Wu, Kai-Xin Zhang, Jing-Kun Xu, Li-Min Lu, Xiao-Fei Zhu, Yao Wu. Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes[J]. Chinese Chemical Letters,
;2015, 26(5): 613-618.
doi:
10.1016/j.cclet.2014.11.032
-
A simple and sensitive electroanalytical method for determination of shikonin, a widely used antitumoral agent, using β-cyclodextrin-functionalized multiwalled carbon nanotubes composite modified glassy carbon electrodes (MWCNTs/β-CD/GCE) was presented. CDs are water-soluble and environmentally friendly and can improve the dispersibility of MWCNTs/β-CD functional materials, which was confirmed by SEM. The electrochemical behaviors of shikonin on different electrodes were investigated by cyclic voltammetry (CV) and differential pulse voltammograms (DPVs). The results demonstrated that the redox peak currents of shikonin obtained at MWCNTs/β-CD/GCE were much higher than those at the β-CD/GCE and MWCNTs/GCE, which can be attributed to the combination of the excellent electrocatalytic properties of MWCNTs and the molecular recognition ability of β-CD. At MWCNTs/β-CD/GCE, the response current exhibits a linear range from 5.0 nmol/L to 10.0 μmol/L with a detection limit of 1.0 nmol/L (S/N = 3). As a practical application, the proposed method was applied to quantitatively determine shikoninin urine samples with satisfying results.
-
-
-
[1]
[1] V.P. Papageorgiou, A.N. Assimopoulou, E.A. Couladouros, et al., The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products, Angew. Chem. Int. Ed. 38 (1999) 270-301.
-
[2]
[2] L.P. Wu, L.M. Lu, J.K. Xu, et al., Electrochemical determination of the anticancer herbal drug shikonin at a nanostructured poly(hydroxymethylated-3,4-ethylenedioxythiophene) modified electrode, Electroanalysis 25 (2013) 2244-2250.
-
[3]
[3] J. Han, X.C. Weng, K.S. Bi, Antioxidants from a Chinese medicinal herb - Lithospermum erythrorhizon, Food Chem. 106 (2008) 2-10.
-
[4]
[4] Y. Hu, Z.H. Jiang, K.S.Y. Leung, Z.Z. Zhao, Simultaneous determination of naphthoquinone derivatives in boraginaceous herbs by high-performance liquid chromatography, Anal. Chim. Acta 577 (2006) 26-31.
-
[5]
[5] Y.I. Huang, Y.H. Cheng, C.C. Yu, T.R. Tsai, T.M. Cham, Microencapsulation of extract containing shikonin using gelatin-acacia coacervation method: a formaldehydefree approach, Colloids Surf. B 58 (2007) 290-297.
-
[6]
[6] N. Sharma, U.K. Sharma, A.P. Gupta, et al., Simultaneous densitometric determination of shikonin, acetylshikonin, and β-acetoxyisovaleryl-shikonin in ultrasonic- assisted extracts of four Arnebia species using reversed-phase thin layer chromatography, J. Sep. Sci. 32 (2009) 3239-3245.
-
[7]
[7] H. Yamamoto, K. Yazaki, K. Inoue, Simultaneous analysis of shikimate-derived secondary metabolites in Lithospermum erythrorhizon cell suspension cultures by high-performance liquid chromatography, J. Chromatogr. B 738 (2000) 3-15.
-
[8]
[8] Y. Sun, T. Guo, Y. Sui, F.M. Li, Quantitative determination of rutin, quercetin, and adenosine inFlos Carthamiby capillary electrophoresis, J, Sep. Sci. 26 (2003) 1203- 1206.
-
[9]
[9] B.R. Lichtenstein, J.F. Cerda, R.L. Koder, P. Leslie Dutton, Reversible proton coupled electron transfer in a peptide-incorporated naphthoquinone amino acid, Chem. Commun. 2 (2009) 168-170.
-
[10]
[10] R. Chaisuksant, A. Voulgaropoulos, A.S. Mellidis, V.P. Papegeorgiou, Voltammetric determination of total alkannin using a glassy carbon electrode, Analyst 118 (1993) 179-182.
-
[11]
[11] P.M. Ajayan, Nanotubes from carbon, Chem. Rev. 99 (1999) 1787-1800.
-
[12]
[12] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.
-
[13]
[13] C. Wei, L.M. Dai, A. Roy, T. Tia Benson, Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites, J. Am. Chem. Soc. 128 (2006) 1412-1413.
-
[14]
[14] K.X. Zhang, L.M. Lu, J.K. Xu, et al., Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of azithromycin, Anal. Chim. Acta 787 (2013) 50-56.
-
[15]
[15] Q.W. Li, J. Zhang, H. Yan, M.S. He, Z.F. Liu, Thionine-mediated chemistry of carbon nanotubes, Carbon 42 (2004) 287-291.
-
[16]
[16] J. Zhang, J.K. Lee, Y. Wu, R.W. Murray, Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes, Nano Lett. 3 (2003) 403-407.
-
[17]
[17] J.L. He, Y. Yang, X. Yang, et al., β-Cyclodextrin incorporated carbon nanotubemodified electrode as an electrochemical sensor for rutin, Sens. Actuators B 114 (2006) 94-100.
-
[18]
[18] Y.J. Guo, S.J. Guo, J. Li, E.K. Wang, S.J. Dong, Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim, Talanta 84 (2011) 60-64.
-
[19]
[19] C.M. Moraes, P. Abrami, E. dePaula, A. Braga, L. Fraceto, Study of the interaction between S(-) bupivacaine and 2-hydroxypropyl-β-cyclodextrin, Int. J. Pharm. 331 (2007) 99-106.
-
[20]
[20] C.C. Harley, A.D. Rooney, C.B. Breslin, The selective detection of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins, Sens. Actuators B 150 (2010) 498-504.
-
[21]
[21] J. Zhao, J.S. Jin, C.H. Wu, et al., Highly sensitive identification of cancer cells by combining the new tetrathiafulvalene derivative with a β-cyclodextrin/multiwalled carbon nanotubes modified GCE, Analyst 135 (2010) 2965-2969.
-
[22]
[22] A. Abbaspour, A. Noori, A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine, Biosens. Bioelectron. 26 (2011) 4674-4680.
-
[23]
[23] Y.J. Guo, S.J. Guo, J.T. Ren, et al., Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and host-guest inclusion for enhanced electrochemical performance, ACS Nano 4 (2010) 4001- 4010.
-
[24]
[24] B. Cappello, C. Carmignani, M. Iervolino, M. Immacolata La Rotonda, M. Fabrizio Saettone, Solubilization of tropicamide by hydroxypropyl-β-cyclodextrin and water-soluble polymers: in vitro/in vivo studies, Int. J. Pharm. 213 (2001) 75-81.
-
[25]
[25] X.M. Xu, Z. Liu, X. Zhang, et al., β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers, Electrochim. Acta 58 (2011) 142-149.
-
[26]
[26] G.A. Rivas, M.D. Rubianes, M.C. Rodríguez, et al., Carbon nanotubes for electrochemical biosensing, Talanta 74 (2007) 291-307.
-
[27]
[27] K. Liu, H. Fu, Y. Xie, et al., Assembly of β-cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes, J. Phys. Chem. C 112 (2008) 951-957.
-
[28]
[28] G. Alarcón-Angeles, B. Pérez-López, M. Palomar-Pardave, et al., Enhanced host- guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes, Carbon 46 (2008) 898-906.
-
[29]
[29] Y. Gao, Y. Cao, D.G. Yang, et al., Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode, J. Hazard. Mater. 199-200 (2012) 111-118.
-
[30]
[30] Y.C. Zhao, X.Y. Song, Q.S. Song, Z.L. Yin, A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant, CrystEngComm 14 (2012) 6710-6719.
-
[31]
[31] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. 101 (1979) 19-28.
-
[32]
[32] J. An, J.P. Li, W.X. Chen, et al., Electrochemical study and application on shikonin at poly(diallyldimethylammoniumchloride) functionalized graphene sheets modified glass carbon electrode, Chem. Res. Chin. Univ. 29 (2013) 798- 805.
-
[33]
[33] H.B. Zhou, J.Y. Wang, B.X. Yea, Electrochemical investigation of redox reactions of herbal drug Shikonin and its determination in pharmaceutical preparations, J. Anal. Chem. 65 (2010) 749-754.
-
[1]
-
-
-
[1]
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
-
[2]
Zhijuan Niu , Peizhe Sun , Kwangnak Koh , Changping Li . Ultrasensitive electrochemical sensor based on para-sulfonatocalix[4]arene functionalized gold nanoparticles for sulfamethazine detection. Chinese Chemical Letters, 2025, 36(11): 110844-. doi: 10.1016/j.cclet.2025.110844
-
[3]
Chong Wang , Hao Xie , Rulan Xia , Xuewei Liao , Jin Wang , Huajun Yang , Chen Wang . Nanofluidic ion rectification sensor for enantioselective recognition and detection. Chinese Chemical Letters, 2025, 36(8): 110642-. doi: 10.1016/j.cclet.2024.110642
-
[4]
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
-
[5]
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
-
[6]
Chun-Ying Xu , Xiao-Lin Luan , Yuan-Yuan Cui , Cheng-Xiong Yang . One-pot in situ doping synthesis of phenylboronic acid-functionalized magnetic-cyclodextrin microporous organic network for specific enrichment and detection of sulfonylurea herbicides. Chinese Chemical Letters, 2025, 36(9): 110937-. doi: 10.1016/j.cclet.2025.110937
-
[7]
Yi ZHANG , Guang LI , Wenxuan FAN , Qingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445
-
[8]
Menglin Zhou , Lin Zhang , Xuefei Shan , Fengqin Chang , Wentong Chen , Xuguang An , Guangzhi Hu . Hydrangea-like B/N co-doped carbon-based electrochemical sensors for the efficient and sensitive detection of aristolochic acid in Aristolochia. Chinese Chemical Letters, 2025, 36(12): 111073-. doi: 10.1016/j.cclet.2025.111073
-
[9]
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
-
[10]
Rui TIAN , Duo LI , Yuan REN , Jiamin CHAI , Xuehua SUN , Haoyu LI , Yuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389
-
[11]
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
-
[12]
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
-
[13]
Linnan Jiang , Zhenkai Qian , Yong Chen , Xiaoyong Yu , Yugui Qiu , Wen-Wen Xu , Yonghui Sun , Xiufang Xu , Lihua Wang , Yu Liu . Double response reversible phosphorescence based on cyclodextrin supramolecular flexible elastic achieved multicolor delayed fluorescence. Chinese Chemical Letters, 2025, 36(8): 110676-. doi: 10.1016/j.cclet.2024.110676
-
[14]
Bo Liu , Shuaiqiang Shao , Junjie Cai , Zijian Zhang , Feng Tian , Kun Yang , Fan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814
-
[15]
Huakang Zong , Xinyue Li , Yanlin Zhang , Faxun Wang , Xingxing Yu , Guotao Duan , Yuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195
-
[16]
Xianghua Zeng , Weichen Meng , Xiaochun Han , Jiachen Yang , Kaiqi Wu , Fengxian Gao , Xiliang Luo . Highly stable and antifouling solid-contact ion-selective electrode for K+ detection in complex system based on multifunctional peptide and conductive MOF. Chinese Chemical Letters, 2025, 36(8): 110564-. doi: 10.1016/j.cclet.2024.110564
-
[17]
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
-
[18]
Wei GUO , Zhuoyi GUO , Xiaoxin LI , Wei ZHANG , Juanzhi YAN , Tingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097
-
[19]
Xiujuan Qiao , Zhenying Xu , Zhen Wei , Yiting Hou , Fengxian Gao , Xijuan Yu , Xiliang Luo . A wearable electrochemical biosensor based on antifouling and conducting polyaniline hydrogel for cortisol detection in sweat. Chinese Chemical Letters, 2025, 36(11): 110884-. doi: 10.1016/j.cclet.2025.110884
-
[20]
Dan Shao , Yujing Lyu , Chengyuan Liu , Hao Wang , Ning Ma , Hao Xu , Wei Yan , Xiaohua Jia , Haojie Song . Attracting magnetic BDD particles onto Ti/RuO2-IrO2 by using a magnet: A novel 2.5-dimensional electrode for electrochemical oxidation wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110641-. doi: 10.1016/j.cclet.2024.110641
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1031)
- HTML views(16)
Login In
DownLoad: