Citation:
Yan-Sha Gao, Li-Ping Wu, Kai-Xin Zhang, Jing-Kun Xu, Li-Min Lu, Xiao-Fei Zhu, Yao Wu. Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes[J]. Chinese Chemical Letters,
;2015, 26(5): 613-618.
doi:
10.1016/j.cclet.2014.11.032
-
A simple and sensitive electroanalytical method for determination of shikonin, a widely used antitumoral agent, using β-cyclodextrin-functionalized multiwalled carbon nanotubes composite modified glassy carbon electrodes (MWCNTs/β-CD/GCE) was presented. CDs are water-soluble and environmentally friendly and can improve the dispersibility of MWCNTs/β-CD functional materials, which was confirmed by SEM. The electrochemical behaviors of shikonin on different electrodes were investigated by cyclic voltammetry (CV) and differential pulse voltammograms (DPVs). The results demonstrated that the redox peak currents of shikonin obtained at MWCNTs/β-CD/GCE were much higher than those at the β-CD/GCE and MWCNTs/GCE, which can be attributed to the combination of the excellent electrocatalytic properties of MWCNTs and the molecular recognition ability of β-CD. At MWCNTs/β-CD/GCE, the response current exhibits a linear range from 5.0 nmol/L to 10.0 μmol/L with a detection limit of 1.0 nmol/L (S/N = 3). As a practical application, the proposed method was applied to quantitatively determine shikoninin urine samples with satisfying results.
-
-
-
[1]
[1] V.P. Papageorgiou, A.N. Assimopoulou, E.A. Couladouros, et al., The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products, Angew. Chem. Int. Ed. 38 (1999) 270-301.
-
[2]
[2] L.P. Wu, L.M. Lu, J.K. Xu, et al., Electrochemical determination of the anticancer herbal drug shikonin at a nanostructured poly(hydroxymethylated-3,4-ethylenedioxythiophene) modified electrode, Electroanalysis 25 (2013) 2244-2250.
-
[3]
[3] J. Han, X.C. Weng, K.S. Bi, Antioxidants from a Chinese medicinal herb - Lithospermum erythrorhizon, Food Chem. 106 (2008) 2-10.
-
[4]
[4] Y. Hu, Z.H. Jiang, K.S.Y. Leung, Z.Z. Zhao, Simultaneous determination of naphthoquinone derivatives in boraginaceous herbs by high-performance liquid chromatography, Anal. Chim. Acta 577 (2006) 26-31.
-
[5]
[5] Y.I. Huang, Y.H. Cheng, C.C. Yu, T.R. Tsai, T.M. Cham, Microencapsulation of extract containing shikonin using gelatin-acacia coacervation method: a formaldehydefree approach, Colloids Surf. B 58 (2007) 290-297.
-
[6]
[6] N. Sharma, U.K. Sharma, A.P. Gupta, et al., Simultaneous densitometric determination of shikonin, acetylshikonin, and β-acetoxyisovaleryl-shikonin in ultrasonic- assisted extracts of four Arnebia species using reversed-phase thin layer chromatography, J. Sep. Sci. 32 (2009) 3239-3245.
-
[7]
[7] H. Yamamoto, K. Yazaki, K. Inoue, Simultaneous analysis of shikimate-derived secondary metabolites in Lithospermum erythrorhizon cell suspension cultures by high-performance liquid chromatography, J. Chromatogr. B 738 (2000) 3-15.
-
[8]
[8] Y. Sun, T. Guo, Y. Sui, F.M. Li, Quantitative determination of rutin, quercetin, and adenosine inFlos Carthamiby capillary electrophoresis, J, Sep. Sci. 26 (2003) 1203- 1206.
-
[9]
[9] B.R. Lichtenstein, J.F. Cerda, R.L. Koder, P. Leslie Dutton, Reversible proton coupled electron transfer in a peptide-incorporated naphthoquinone amino acid, Chem. Commun. 2 (2009) 168-170.
-
[10]
[10] R. Chaisuksant, A. Voulgaropoulos, A.S. Mellidis, V.P. Papegeorgiou, Voltammetric determination of total alkannin using a glassy carbon electrode, Analyst 118 (1993) 179-182.
-
[11]
[11] P.M. Ajayan, Nanotubes from carbon, Chem. Rev. 99 (1999) 1787-1800.
-
[12]
[12] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.
-
[13]
[13] C. Wei, L.M. Dai, A. Roy, T. Tia Benson, Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites, J. Am. Chem. Soc. 128 (2006) 1412-1413.
-
[14]
[14] K.X. Zhang, L.M. Lu, J.K. Xu, et al., Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of azithromycin, Anal. Chim. Acta 787 (2013) 50-56.
-
[15]
[15] Q.W. Li, J. Zhang, H. Yan, M.S. He, Z.F. Liu, Thionine-mediated chemistry of carbon nanotubes, Carbon 42 (2004) 287-291.
-
[16]
[16] J. Zhang, J.K. Lee, Y. Wu, R.W. Murray, Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes, Nano Lett. 3 (2003) 403-407.
-
[17]
[17] J.L. He, Y. Yang, X. Yang, et al., β-Cyclodextrin incorporated carbon nanotubemodified electrode as an electrochemical sensor for rutin, Sens. Actuators B 114 (2006) 94-100.
-
[18]
[18] Y.J. Guo, S.J. Guo, J. Li, E.K. Wang, S.J. Dong, Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim, Talanta 84 (2011) 60-64.
-
[19]
[19] C.M. Moraes, P. Abrami, E. dePaula, A. Braga, L. Fraceto, Study of the interaction between S(-) bupivacaine and 2-hydroxypropyl-β-cyclodextrin, Int. J. Pharm. 331 (2007) 99-106.
-
[20]
[20] C.C. Harley, A.D. Rooney, C.B. Breslin, The selective detection of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins, Sens. Actuators B 150 (2010) 498-504.
-
[21]
[21] J. Zhao, J.S. Jin, C.H. Wu, et al., Highly sensitive identification of cancer cells by combining the new tetrathiafulvalene derivative with a β-cyclodextrin/multiwalled carbon nanotubes modified GCE, Analyst 135 (2010) 2965-2969.
-
[22]
[22] A. Abbaspour, A. Noori, A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine, Biosens. Bioelectron. 26 (2011) 4674-4680.
-
[23]
[23] Y.J. Guo, S.J. Guo, J.T. Ren, et al., Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and host-guest inclusion for enhanced electrochemical performance, ACS Nano 4 (2010) 4001- 4010.
-
[24]
[24] B. Cappello, C. Carmignani, M. Iervolino, M. Immacolata La Rotonda, M. Fabrizio Saettone, Solubilization of tropicamide by hydroxypropyl-β-cyclodextrin and water-soluble polymers: in vitro/in vivo studies, Int. J. Pharm. 213 (2001) 75-81.
-
[25]
[25] X.M. Xu, Z. Liu, X. Zhang, et al., β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers, Electrochim. Acta 58 (2011) 142-149.
-
[26]
[26] G.A. Rivas, M.D. Rubianes, M.C. Rodríguez, et al., Carbon nanotubes for electrochemical biosensing, Talanta 74 (2007) 291-307.
-
[27]
[27] K. Liu, H. Fu, Y. Xie, et al., Assembly of β-cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes, J. Phys. Chem. C 112 (2008) 951-957.
-
[28]
[28] G. Alarcón-Angeles, B. Pérez-López, M. Palomar-Pardave, et al., Enhanced host- guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes, Carbon 46 (2008) 898-906.
-
[29]
[29] Y. Gao, Y. Cao, D.G. Yang, et al., Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode, J. Hazard. Mater. 199-200 (2012) 111-118.
-
[30]
[30] Y.C. Zhao, X.Y. Song, Q.S. Song, Z.L. Yin, A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant, CrystEngComm 14 (2012) 6710-6719.
-
[31]
[31] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. 101 (1979) 19-28.
-
[32]
[32] J. An, J.P. Li, W.X. Chen, et al., Electrochemical study and application on shikonin at poly(diallyldimethylammoniumchloride) functionalized graphene sheets modified glass carbon electrode, Chem. Res. Chin. Univ. 29 (2013) 798- 805.
-
[33]
[33] H.B. Zhou, J.Y. Wang, B.X. Yea, Electrochemical investigation of redox reactions of herbal drug Shikonin and its determination in pharmaceutical preparations, J. Anal. Chem. 65 (2010) 749-754.
-
[1]
-
-
-
[1]
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
-
[2]
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
-
[3]
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
-
[4]
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
-
[5]
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
-
[6]
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
-
[7]
Bo Liu , Shuaiqiang Shao , Junjie Cai , Zijian Zhang , Feng Tian , Kun Yang , Fan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814
-
[8]
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
-
[9]
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
-
[10]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[11]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[12]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[13]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[14]
Cailing Wu , Shaojie Wu , Qifei Huang , Kai Sun , Xianqiang Huang , Jianji Wang , Bing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250
-
[15]
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
-
[16]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
-
[17]
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
-
[18]
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
-
[19]
Xilin Bai , Wei Deng , Jingjuan Wang , Ming Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959
-
[20]
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(590)
- HTML views(8)