Citation: Su-Hua Fan, Jie Shen, Hai Wu, Ke-Zhi Wangb, An-Guo Zhang. A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion[J]. Chinese Chemical Letters, ;2015, 26(5): 580-584. doi: 10.1016/j.cclet.2014.11.031 shu

A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion

  • Received Date: 15 September 2014
    Available Online: 17 November 2014

    Fund Project: the Innovation Training Program for the Anhui College students (Nos. AH201310371039 and AH201310371041) (No. 1408085QB39)

  • A dual colorimetric and luminescent sensor based on a heteroleptic ruthenium dye [Ru(Hipdpa)(Hdcbpy)(NCS)2]-·0.5H+0.5[N(C4H9)4]+ Ru(Hipdpa) {where Hdcbpy = monodeprotonted-4,4'-dicarboxy-2,2'- bipyridine and Hipdpa = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline} for selective detection of Hg2+ is presented. The results of spectrophotometric titrations revealed an evident luminescence intensity enhancement (I/I0 = 11) and a considerable blue shift in visible absorption and luminescence maxima with the addition of Hg2+. The sensitive response of the optical sensor on Hg2+ was attributed to the binding of the electron-deficient Hg2+ to the electron-rich sulfur atom of the thiocyanate (NCS) ligand in the Ru(Hipdpa), which led to an increase in the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Accordingly, the blue shift in the absorption spectrum of Ru(Hipdpa) due to the binding of Hg2+ was obtained. Ru(Hipdpa) was found to have decreased Hg2+ detection limit and improved linear region as compared to di(tetrabutylammonium) cis-bis(isothiocyanato)bis(2,2'-bipyridine-4-carboxylic acid-4'- carboxylate)ruthenium(II) N719. Moreover, a dramatic color change from pink to yellow was observed, which allowed simple monitoring of Hg2+ by either naked eyes or a simple colorimetric reader. Therefore, the proposed sensor can provide potential applications for Hg2+ detection.
  • 加载中
    1. [1]

      [1] H.H. Harris, I.J. Pickering, G.N. George, The chemical form of mercury in fish, Science 301 (2003) 1203.

    2. [2]

      [2] M.S. Gustin, M. Coolbaugh, M. Engle, et al., Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains, Environ. Geol. 43 (2003) 339-351.

    3. [3]

      [3] C.M.L. Carvalho, E.H. Chew, S.I. Hashemy, J. Lu, A. Holmgren, Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity, J. Biol. Chem. 283 (2008) 11913-11923.

    4. [4]

      [4] T.W. Clarkson, L. Magos, G.J. Myers, The toxicology of mercury-current exposures and clinical manifestations, N. Engl. J. Med. 349 (2003) 1731-1737.

    5. [5]

      [5] G.J. Myers, P.W. Davidson, C. Cox, et al., Summary of the seychelles child development study on the relationship of fetal methylmercury exposure to neurodevelopment, Neurotoxicology 16 (1995) 711-716.

    6. [6]

      [6] M. Harada, Minamata disease: methylmercury poisoning in Japan caused by environmental pollution, Crit. Rev. Toxicol. 25 (1995) 1-24.

    7. [7]

      [7] H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions, Chem. Soc. Rev. 41 (2012) 3210- 3244.

    8. [8]

      [8] J.O. Moon, M.G. Choi, T. Sun, J.I. Choe, S.K. Chang, Synthesis of thionaphthalimides and their dual Hg2+-selective signaling by desulfurization of thioimides, Dyes Pigment 96 (2013) 170-175.

    9. [9]

      [9] X.J. Jiang, C.L. Wong, P.C. Lo, K.P. Ng Dennis, A highly selective and sensitive BODIPY-based colourimetric and turn-on fluorescent sensor for Hg2+ ions, Dalton Trans. 41 (2012) 1801-1807.

    10. [10]

      [10] S. Maiti, C. Pezzato, S.G. Martin, L.J. Prins, Multivalent interactions regulate signal transduction in a self-assembled Hg2+ sensor, J. Am. Chem. Soc. 136 (2014) 11288-11291.

    11. [11]

      [11] J.F. Li, Y.Z. Wu, F.Y. Song, et al., A highly selective and sensitive polymer-based OFF-ON fluorescent sensor for Hg2+ detection incorporating salen and perylenyl moieties, J. Mater. Chem. 22 (2012) 478-482.

    12. [12]

      [12] Y.C. Chen, C.C. Zhu, Z.H. Yang, et al., A new "turn-on" chemodosimeter for Hg2+: ICT fluorophore formation via Hg2+-induced carbaldehyde recovery from 1,3- dithiane, Chem. Commun. 48 (2012) 5094-5096.

    13. [13]

      [13] Z.Q. Hu, W.M. Zhuang, M. Li, et al., Highly sensitive and selective turn-on fluorescent chemodosimeter for Hg2+ based on thiorhodamine 6G-amide and its applications for biological imaging, Dyes Pigments 98 (2013) 286-289.

    14. [14]

      [14] L. Wang, X.J. Zhu, W.Y. Wong, et al., Dipyrrolylquinoxaline-bridged Schiff bases: a new class of fluorescent sensors for mercury(II), Dalton Trans. (19) (2005) 3235- 3240.

    15. [15]

      [15] Z.K. Wu, Zhang Y.F., J.S. Ma, G.Q. Yang, Ratiometric Zn2+ sensor and strategy for Hg2+ selective recognition by central metal ion replacement, Inorg. Chem. 45 (2006) 3140-3142.

    16. [16]

      [16] Z. Gu, M. Zhao, Y. Sheng, L.A. Bentolila, Y. Tang, Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay, Anal. Chem. 83 (2011) 2324-2329.

    17. [17]

      [17] X. Ma, F.Y. Song, L. Wang, Y.X. Cheng, C.J. Zhu, Polymer-based colorimetric and "turn off" fluorescence sensor incorporating benzo[2,1,3]thiadiazole moiety for Hg2+ detection, J. Polym. Sci. Part A: Polym. Chem. 50 (2012) 517-522.

    18. [18]

      [18] K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub, A selective and sensitive fluoroionophore for HgII, AgI , and CuII with virtually decoupled fluorophore and receptor units, J. Am. Chem. Soc. 122 (2000) 968-969.

    19. [19]

      [19] X.M. Wang, H. Yan, X.L. Feng, Y. Chen, 1-Pyrenecarboxaldehyde thiosemicarbazone: a novel fluorescent molecular sensor towards mercury (II) ion, Chin. Chem. Lett. 21 (2010) 1124-1128.

    20. [20]

      [20] E. Coronado, J.R. Galán-Mascarós, C. Martí-Gastaldo, et al., Reversible colorimetric probes for mercury sensing, J. Am. Chem. Soc. 127 (2005) 12351-12356.

    21. [21]

      [21] A.Reynal, J. Albero, A. Vidal-Ferran, E. Palomares, Diastereoselectivity andmolecular recognition of mercury(II) ions, Inorg. Chem. Commun. 12 (2009) 131-134.

    22. [22]

      [22] W.C. Yang, S.H. Fan, K.Z. Wang, Optically highly selective sensing of fluoride ion by N3 dye, Acta Phys. Chim. Sin. 24 (2008) 1313-1315.

    23. [23]

      [23] X.H. Li, X.F. Duan, F.Y. Li, C.H. Huang, Synthesis of new mixed-ligands amphiphilic ruthenium complex and its naked-eye detecable recognition of Hg2+, Chem. J. Chin. Univ. 27 (2006) 419-423.

    24. [24]

      [24] S.H. Fan, A.G. Zhang, C.C. Ju, L.H. Gao, K.Z. Wang, A triphenylamine-grafted imidazo[4,5-f][1,10]phenanthroline ruthenium(II) complex: acid-base and photoelectric properties, Inorg. Chem. 49 (2010) 3752-3763.

    25. [25]

      [25] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 03, Inc, Pittsburgh, PA, 2003.

    26. [26]

      [26] P. Job, Formation and stability of inorganic complexes in solution, Ann. Chim. 9 (1928) 113-203.

    27. [27]

      [27] M. Zhang, M.Y. Li, F.Y. Li, et al., A novel Y-type two-photon active fluorophore: synthesis and appliciation in ratiometric fluorescent sensosr for fluoride anion, Dyes Pigment 77 (2008) 408-414.

    28. [28]

      [28] D.Q. Shi, H.Y. Wang, X.Y. Li, et al., Novel N,N'-diacylhydrazine-based colorimetric receptors for selective sensing of fluoride and acetate anions, Chin. J. Chem. 25 (2007) 973-976.

    29. [29]

      [29] R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc. 85 (1963) 3533- 3539.

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    3. [3]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    4. [4]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    5. [5]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    6. [6]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    7. [7]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    8. [8]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    9. [9]

      Yubin FengWeihang ZhuXinting YangZhe YangChenke WeiYukai GuoAndrew K. WhittakerChun ShenYue ZhaoWenrui QuBai YangQuan Lin . Amphibian-inspired conductive ionogel stabilizing in air/water as a wearable amphibious flexible sensor for drowning alarms. Chinese Chemical Letters, 2025, 36(4): 110554-. doi: 10.1016/j.cclet.2024.110554

    10. [10]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    11. [11]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    12. [12]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    13. [13]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    14. [14]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    15. [15]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    16. [16]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    17. [17]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    18. [18]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    19. [19]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    20. [20]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

Metrics
  • PDF Downloads(0)
  • Abstract views(604)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return