Citation: Di Zhao, Yong Chen, Yu Liu. Comparative studies on molecular induced aggregation of hepta-imidazoliumyl-β-cyclodextrin towards anionic surfactants[J]. Chinese Chemical Letters, ;2015, 26(7): 829-833. doi: 10.1016/j.cclet.2014.11.028 shu

Comparative studies on molecular induced aggregation of hepta-imidazoliumyl-β-cyclodextrin towards anionic surfactants

  • Corresponding author: Yu Liu, 
  • Received Date: 29 September 2014
    Available Online: 29 October 2014

    Fund Project: We thank 973 Programme (No. 2011CB932502) (No. 2011CB932502)

  • A b-cyclodextrin derivative bearing seven cationic arms and its singly charged analogue, i.e., per-6- deoxy-6-(1-methylimidazol-3-ium-3-yl)-β-cyclodextrin (3) and mono-6-deoxy-6-(1-methylimidazol-3-ium-3-yl)-β-cyclodextrin (4) were synthesized and fully characterized. Their induced aggregation behaviours towards two anionic surfactant, that is, sodium dodecyl sulfonate (SDS) and dioctyl sodium sulfosuccinate (Aerosol OT, AOT), were investigated by UV-vis, NMR, Zeta-potential, dynamic light scattering (DLS), and transmission electron microscopy. The results revealed that host 3 can induce the molecular aggregation of anionic surfactant at concentration far lower than its original CAC, leading to the larger diameter, the narrower size distribution and the higher thermal stability of the induced aggregate towards the anionic surfactant possessing more hydrophobic tails.
  • 加载中
    1. [1]

      [1] X. Zhang, C. Wang, Supramolecular amphiphiles, Chem. Soc. Rev. 40 (2011) 94– 101.

    2. [2]

      [2] (a) Y. Wang, N. Ma, Z. Wang, X. Zhang, Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with a-cyclodextrin, Angew. Chem. Int. Ed. 46 (2007) 2823–2826; (b) H.B. Cheng, H.Y. Zhang, Y. Liu, Dual-stimulus luminescent lanthanide molecular switch based on an unsymmetrical diarylperfluorocyclopentene, J. Am. Chem. Soc. 135 (2013) 10190–10193; (c) K. Wang, D.S. Guo, Y. Liu, Temperature-controlled supramolecular vesicles modulated by p-sulfonatocalix[5]arene with pyrene, Chem.: Eur. J. 16 (2010) 8006–8011; (d) Y.J. Jeon, P.K. Bharadwaj, S. Choi, J.W. Lee, K. Kim, Supramolecular amphiphiles: spontaneous formation of vesicles triggered by formation of a chargetransfer complex in a host, Angew. Chem. Int. Ed. 41 (2002) 4474–4476; (e) Y. Wang, H. Xu, X. Zhang, Tuning the amphiphilicity of building blocks: controlled self-assembly and disassembly for functional supramolecular materials, Adv. Mater. 21 (2009) 2849–2864; (f) Y. Cao, X.Y. Hu, Y. Li, et al., Multistimuli-responsive supramolecular vesicles based on water-soluble pillar[6]arene and SAINT complexation for controllable drug release, J. Am. Chem. Soc. 136 (2014) 10762–10769; (g) D.S. Guo, K. Wang, Y.X. Wang, Y. Liu, Cholinesterase-responsive supramolecular vesicle, J. Am. Chem. Soc. 134 (2012) 10244–10250.

    3. [3]

      [3] D.S. Guo, Y. Liu, Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications, Acc. Chem. Res. 47 (2014) 1925–1934.

    4. [4]

      [4] H. Zhang, X. Ma, K.T. Nguyen, Y. Zhao, Biocompatible pillararene-assembly-based carriers for dual bioimaging, ACS Nano 7 (2013) 7853–7863.

    5. [5]

      [5] (a) U. Rauwald, O.A. Scherman, Supramolecular block copolymers with cucurbit[ 8]uril in water, Angew. Chem. Int. Ed. 47 (2008) 3950–3953; (b) J. Li, L. Zhou, Q. Luo, et al., Cucurbit[7]uril-based vesicles formed by self-assembly of supramolecular amphiphiles, Chin. J. Chem. 30 (2012) 2085– 2090.

    6. [6]

      [6] (a) R.X. Li, S.M. Liu, J.Q. Zhao, H. Otsuka, A. Takahara, Preparation and characterization of cross-linked b-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures, Chin. Chem. Lett. 22 (2011) 217–220; (b) L.H. Wang, Z.J. Zhang, H.Y. Zhang, H.L. Wu, Y. Liu, A twin-axial[5]pseudorotaxane based on cucurbit[8]uril and a-cyclodextrin, Chin. Chem. Lett. 24 (2013) 949–952; (c) Z. He, Z. Wang, H. Zhang, et al., Doxycycline and hydroxypropyl-β-cyclodextrin complex in poloxamer thermal sensitive hydrogel for ophthalmic delivery, Acta Pharm. Sin. B 1 (2011) 254–260; (d) S.S. Zhai, Y. Chen, Y. Liu, Selective binding of bile salts by b-cyclodextrin derivatives with appended quinolyl arms, Chin. Chem. Lett. 24 (2013) 442–446.

    7. [7]

      [7] T. Bojinova, Y. Coppel, N. Lauth-de Viguerie, et al., Complexes between b-cyclodextrin and aliphatic guests as newnoncovalent amphiphiles: formation and physicochemical studies, Langmuir 19 (2003) 5233–5239.

    8. [8]

      [8] A. Gadelle, J. Defaye, Selective halogenation at primary positions of cyclomaltooligosaccharides and a synthesis of per-3,6-anhydro cyclomaltooligosaccharides, Angew. Chem. Int. Ed. Engl. 30 (1991) 78–80.

    9. [9]

      [9] B. Brady, N. Lynam, T.O. Sullivan, et al., 6A-O-p-Toluenesulfonyl-β-cyclodextrin, Org. Synth. 10 (2004) 77–79.

    10. [10]

      [10] (a) J.E. Bujake, E.D. Goddard, Surface composition of sodium lauryl sulphonate and sulphate solutions by foaming and surface tension, Trans. Faraday Soc. 61 (1965) 190–195; (b) H.Z. Yuan, L.F. Shen, Y.R. Du, S. Zhao, J.Y. Yu, Micellization of sodium dodecyl sulfonate and Triton X-100 in polyacrylamide water solution studied by 1H NMR relaxation and two-dimensional nuclear overhauser enhancement spectroscopy, Colloid Polym. Sci. 277 (1999) 1026–1032; (c) A. Chatterjee, S.P. Moulik, S.K. Sanyal, B.K. Mishra, P.M. Puri, Thermodynamics of micelle formation of ionic surfactants: a critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements, J, Phys. Chem. B 105 (2001) 12823–12831.

  • 加载中
    1. [1]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    2. [2]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    5. [5]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    6. [6]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    7. [7]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    8. [8]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    9. [9]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    10. [10]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    11. [11]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    12. [12]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    13. [13]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    14. [14]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    15. [15]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    16. [16]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    17. [17]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    18. [18]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    19. [19]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    20. [20]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

Metrics
  • PDF Downloads(0)
  • Abstract views(595)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return