Citation: Peng-Cheng Shi, Xin-Dong Jiang, Rui-Na Gao, Yuan-Yuan Dou, Wei-Li Zhao. Synthesis and application of Vis/NIR dialkylaminophenylbuta-1, 3-dienyl borondipyrromethene dyes[J]. Chinese Chemical Letters, ;2015, 26(7): 834-838. doi: 10.1016/j.cclet.2014.11.010 shu

Synthesis and application of Vis/NIR dialkylaminophenylbuta-1, 3-dienyl borondipyrromethene dyes

  • Corresponding author: Xin-Dong Jiang,  Wei-Li Zhao, 
  • Received Date: 11 September 2014
    Available Online: 20 October 2014

    Fund Project: This work was supported by NNSFC (No. 21372063) (No. 21372063) the Foundation of the Education Department of Henan Province for Science and Technology Research Projects (No. 13A150046) (No. PCS IRT1126)

  • Mono- and bis-dialkylaminophenylbuta-1,3-dienyl boron-dipyrromethenes (BODIPYs) 1-12 were synthesized in 36%-42% yields by a Knoevenagel-type condensation. The absorption and emission maxima (λlabs = 614-739 nm; (λlem = 655-776 nm in CHCl3) of 1-12 covered from the visuble to the nearinfrared region. Probe 1 was ratiometric Vis pH probes. Such probe was almost non-fluorescent. Upon the protonation of the tertiary amine function of 1, the strong fluorescence (φf = 0.97) was released and the florescence intensity was dramatically increased by one thousand folds. The sharp isosbestic points were discovered at 590 nm, which was a ratiometric pH probe.
  • 加载中
    1. [1]

      [1] Y. Zhao, Y. Zhang, X. Lv, et al., Through-bond energy transfer cassettes based on coumarin–Bodipy/distyryl Bodipy dyads with efficient energy efficiences and large pseudo-Stokes' shifts, J. Mater. Chem. 21 (2011) 13168–13171.

    2. [2]

      [2] N. Boens, W. Qin, M. Baruah, et al., Rational design, synthesis, and spectroscopic and photophysical properties of a visible-light-excitable, ratiometric, fluorescent near-neutral pH indicator based on BODIPY, Chem. Eur. J. 17 (2011) 10924–10934.

    3. [3]

      [3] C. Thivierge, J. Han, R.M. Jenkins, K. Burgess, Fluorescent proton sensors based on energy transfer, J. Org. Chem. 76 (2011) 5219–5228.

    4. [4]

      [4] Y.W. Wang, A.B. Descalzo, Z. Shen, X.Z. You, K. Rurack, Dihydronaphthalene-fused boron-dipyrromethene (BODIPY) dyes: insight into the electronic and conformational tuning modes of BODIPY fluorophores, Chem. Eur. J. 16 (2010) 2887–2903.

    5. [5]

      [5] Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano, Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe, J. Am. Chem. Soc. 126 (2004) 3357–3367.

    6. [6]

      [6] V. Goulle, A. Harriman, J.M. Lehn, An electro-photoswitch: redox switching of the luminescence of a bipyridine metal complex, J. Chem. Soc., Chem. Commun. 6 (1993) 1034–1036.

    7. [7]

      [7] R. Bergonzi, L. Fabbrizzi, M. Licchelli, C. Mangano, Molecular switches of fluorescence operating through metal centred redox couples, Coord. Chem. Rev. 170 (1998) 31–46.

    8. [8]

      [8] A.P. de Silva, H.Q.N. Gunaratne, C.P. McCoy, A molecular photoionic AND gate based on fluorescent signaling, Nature 364 (1993) 42–44.

    9. [9]

      [9] K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub, A selective and sensitive fluoroionophore for HgII, AgI and CuII with virtually decoupled fluorophore and receptor units, J. Am. Chem. Soc. 122 (2000) 968–969.

    10. [10]

      [10] Y. Dai, B.K. Lv, X.F. Zhang, Y. Xiao, A two-photon mitotracker based on a naphthalimide fluorophore: synthesis, photophysical properties and cell imaging, Chin. Chem. Lett. 25 (2014) 1001–1005.

    11. [11]

      [11] Y.Y. Huang, M.J. Wang, Z. Yang, et al., High efficient probes with Schiff base functional receptors for hypochlorite sensing under physiological conditions, Chin. Chem. Lett. 25 (2014) 1077–1081.

    12. [12]

      [12] H.Y. Liu, M. Zhao, Q.L. Qiao, et al., Fluorescein-derived fluorescent probe for cellular hydrogen sulfide imaging, Chin. Chem. Lett. 25 (2014) 1060–1064.

    13. [13]

      [13] Y. Liu, E.B. Yang, R. Han, et al., A new rhodamine-based fluorescent chemosensor for mercury in aqueous media, Chin. Chem. Lett. 25 (2014) 1065–1068.

    14. [14]

      [14] C. McDonagh, C.S. Burke, B.D. MacCraith, Optical chemical sensors, Chem. Rev. 108 (2008) 400–422.

    15. [15]

      [15] J. Zhang, X.D. Jiang, X. Shao, et al., A turn-on NIR fluorescent probe for the detection of homocysteine over cysteine, RSC Adv. 4 (2014) 54080–54083.

    16. [16]

      [16] P.T. Snee, R.C. Somers, G.P. Nair, et al., A ratiometric CdSe/ZnS nanocrystal pH sensor, J. Am. Chem. Soc. 128 (2006) 13320–13321.

    17. [17]

      [17] O.S. Wolfbeis, Materials for fluorescence-based optical chemical sensors, J. Mater. Chem. 15 (2005) 2657–2669.

    18. [18]

      [18] R.A. Bissel, A.P. de Silva, H.Q.N. Gunaratne, et al., Molecular fluorescent signalling with ‘fluor-spacer-receptor' systems: approaches to sensing and switching devices via supramolecular photophysics, Chem. Soc. Rev. (1992) 187–195.

    19. [19]

      [19] A.W. Czarnik, Chemical communication in water using fluorescent chemosensors, Acc. Chem. Res. 27 (1994) 302–308.

    20. [20]

      [20] W. Rettig, Charge separation in excited states of decoupled systems-TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis, Angew. Chem. Int. Ed. Engl. 25 (1986) 971–988.

    21. [21]

      [21] A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, et al., Signaling recognition events with fluorescent sensors and switches, Chem. Rev. 97 (1997) 1515–1566.

    22. [22]

      [22] S. Kamila, J.F. Callan, R.C. Mulrooney, M. Middleton, A novel fluorescent chemosensor for Cu(II) in aqueous solution based on a [beta]-aminobisphosphonate receptor, Tetrahedron Lett. 48 (2007) 7756–7760.

    23. [23]

      [23] I. Grabchev, J.M. Chovelon, New blue fluorescent sensors based of 1,8-naphthalimide for metal cations and protons, Dyes Pigments 77 (2008) 1–6.

    24. [24]

      [24] M.P. Debreczeny, W.A. Svec, M.R. Wasielewski, Optical control of photogenerated ion pair lifetimes: an approach to a molecular switch, Science 274 (1996) 584–587.

    25. [25]

      [25] R.W. Wagner, J.S. Lindsey, J. Seth, V. Palaniappan, D.F. Bocian, Molecular optoelectronic gates, J. Am. Chem. Soc. 118 (1996) 3996–3997.

    26. [26]

      [26] B. Tang, X. Liu, K. Xu, et al., A dual near-infrared pH fluorescent probe and its application in imaging of HepG2 cells, Chem. Commun. (2007) 3726–3728.

    27. [27]

      [27] W.F. Jager, T.S. Hammink, O. van den Berg, F.C. Grozema, Highly sensitive watersoluble fluorescent pH sensors based on the 7-amino-1-methylquinolinium chromophore, J. Org. Chem. 75 (2010) 2169–2178.

    28. [28]

      [28] S. Hoogendoorn, K.L. Habets, S. Passemard, et al., Targeted pH-dependent fluorescent activity-based cathepsin probes, Chem. Commun. 47 (2011) 9363–9365.

    29. [29]

      [29] P. Song, X. Chen, Y. Xiang, et al., A ratiometric fluorescent pH probe based on aggregation-induced emission enhancement and its application in live-cell imaging, J. Mater. Chem. 21 (2011) 13470–13475.

    30. [30]

      [30] X. Gao, Y. Zhang, B. Wang, New boronic acid fluorescent reporter compounds. 2. A naphthalene-based on–off sensor functional at physiological pH, Org. Lett. 5 (2003) 4615–4618.

    31. [31]

      [31] B. Tang, F. Yu, P. Li, et al., A near-infrared neutral pH fluorescent probe for monitoring minor pH changes: imaging in living HepG2 and HL-7702 cells, J. Am. Chem. Soc. 131 (2009) 3016–3023.

    32. [32]

      [32] S. Kamila, J.F. Callan, R.C. Mulrooney, M. Middleton, A novel fluorescent chemosensor for Cu(II) in aqueous solution based on a b-aminobisphosphonate receptor, Tetrahedron Lett. 48 (2007) 7756–7760.

    33. [33]

      [33] V.B. Bojinov, T.N. Konstantinova, Fluorescent 4-(2,2,6,6-tetramethylpiperidin-4-ylamino)-1,8-naphthalimide pH chemosensor based on photoinduced electron transfer, Sens. Actuators B 123 (2007) 869–876.

    34. [34]

      [34] T. Werner, C. Huber, S. Heinl, et al., Novel optical pH-sensor based on a boradiazaindacene derivative, Fresenius J. Anal. Chem. 359 (1997) 150–154.

    35. [35]

      [35] B. Guo, X. Peng, A. Cui, et al., Synthesis and spectral properties of new boron dipyrromethene dyes, Dyes Pigments 73 (2007) 206–210.

    36. [36]

      [36] M. Tian, X. Peng, F. Feng, et al., Fluorescent pH probes based on boron dipyrromethene dyes, Dyes Pigments 81 (2009) 58–62.

    37. [37]

      [37] M. Baruah, W. Qin, N. Basarić, et al., BODIPY-based hydroxyaryl derivatives as fluorescent pH probes, J. Org. Chem. 70 (2005) 4152–4157.

    38. [38]

      [38] M. Baruah, W. Qin, C. Flors, et al., Solvent and pH dependent fluorescent properties of a dimethylaminostyryl borondipyrromethene dye in solution, J. Phys. Chem. A 110 (2006) 5998–6009.

    39. [39]

      [39] K. Rurack, M. Kollmannsberger, J. Daub, Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye, Angew. Chem. Int. Ed. 40 (2001) 385–387.

    40. [40]

      [40] A. Coskun, E. Deniz, E.U. Akkaya, Effective PET and ICT switching of boradiazaindacene emission: a unimolecular, emission-mode, molecular half-subtractor with reconfigurable logic gates, Org. Lett. 7 (2005) 5187–5189.

    41. [41]

      [41] V. Ntziachristos, J. Ripoll, R. Weissleder, Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Opt. Lett. 27 (2002) 333–335.

    42. [42]

      [42] J. Sowell, L. Strekowski, G. Patonay, DNA and protein applications of near-infrared dyes, J. Biomed. Opt. 7 (2002) 571–575.

    43. [43]

      [43] R.P. Haugland, Handbook of Fluorescent Probes and Research Chemicals, 6th ed., Molecular Probes Inc, Eugene, 1996.

    44. [44]

      [44] H. Maas, G. Calzaferri, Trapping energy from and injecting energy into dye-zeolite nanoantennae, Angew. Chem. Int. Ed. 41 (2002) 2284–2288.

    45. [45]

      [45] G. Beer, C. Niederalt, S. Grimme, J. Daub, Redox switches with chiroptical signal expression based on binaphthyl boron dipyrromethene conjugates, Angew. Chem. Int. Ed. 39 (2000) 3252–3255.

    46. [46]

      [46] A. Gorman, J. Killoran, C. O'Shea, et al., In vitro demonstration of the heavy-atom effect for photodynamic therapy, J. Am. Chem. Soc. 126 (2004) 10619–10631.

    47. [47]

      [47] Q. Zheng, G. Xu, P.N. Prasad, Conformationally restricted BODIPY dyes: highly fluorescent multi-color probes for cellular imaging, Chem. Eur. J. 14 (2008) 5812–5819.

    48. [48]

      [48] D.P. Wang, Y. Shiraishi, T. Hirai, A BODIPY-based fluorescent chemodosimeter for Cu(II) driven by an oxidative dehydrogenation mechanism, Chem. Commun. 47 (2011) 2673–2675.

    49. [49]

      [49] T. Bura, R. Pascal, G. Ulrich, R. Ziessel, Highly substituted BODIPY dyes with spectroscopic features sensitive to the environment, J. Org. Chem. 76 (2011) 1109–1117.

    50. [50]

      [50] S.L. Zhu, J.T. Zhang, G. Vegesna, et al., Highly water-soluble neutral BODIPY dyes with controllable fluorescence quantum yields, Org. Lett. 13 (2011) 438–441.

    51. [51]

      [51] X.D. Jiang, J. Zhang, T. Furuyama, W. Zhao, Development of mono- and di-AcO substituted BODIPYs on the boron center, Org. Lett. 14 (2012) 248–251.

    52. [52]

      [52] W. Zhao, E.M. Carreira, Conformationally restricted aza-BODIPY: a highly fluorescent, stable, near-infrared-absorbing dye, Angew. Chem. Int. Ed. 44 (2005) 1677–1679.

    53. [53]

      [53] X.D. Jiang, J. Zhang, X.M. Shao, W. Zhao, A selective fluorescent turn-on NIR probe for cysteine, Org. Biomol. Chem. 10 (2012) 1966–1968.

    54. [54]

      [54] T. Bura, D. Hablot, R. Ziessel, Fluorescent boron dipyrromethene (BODIPY) dyes having two and four vinyl residues, Tetrahedron Lett. 52 (2011) 2370–2374.

    55. [55]

      [55] J. Chen, M. Mizumura, H. Shinokubo, A. Osuka, Functionalization of boron dipyrrin (BODIPY) dyes through iridium and rhodium catalysis: a complementary approach to α- and β-substituted BODIPYs, Chem. Eur. J. 15 (2009) 5942–5949.

    56. [56]

      [56] J.S. Lee, N.Y. Kang, Y.K. Kim, et al., Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe, J. Am. Chem. Soc. 131 (2009) 10077–10082.

    57. [57]

      [57] R. Sens, K.H. Drexhage, Fluorescence quantum yield of oxazine and carbazine laser dyes, J. Lumin. 24–25 (1981) 709–712.

    58. [58]

      [58] M.J. Hall, L.T. Allen, D.F. O'Shea, PET modulated fluorescent sensing from the BF2 chelated azadipyrromethene platform, Org. Biomol. Chem. 4 (2006) 776–780.

    59. [59]

      [59] S.O. McDonnell, D.F. O'Shea, Near infrared sensing properties of dimethlyamino substituted BF2-azadipyrromethenes, Org. Lett. 8 (2006) 3493–3496.

  • 加载中
    1. [1]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    2. [2]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    3. [3]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    4. [4]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    5. [5]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    6. [6]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    7. [7]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    8. [8]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    9. [9]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    10. [10]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    11. [11]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    12. [12]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    13. [13]

      Lei WangJun-Jie WuChang-Cun YanWan-Ying YangZong-Lu CheXin-Yu XiaXue-Dong WangLiang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365

    14. [14]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    15. [15]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    16. [16]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    17. [17]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    18. [18]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    19. [19]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    20. [20]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

Metrics
  • PDF Downloads(0)
  • Abstract views(622)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return