Citation:
Min Zhu, Yang Zhao. A convenient catalytic oxidative 1,2-shift of arylalkenes for preparation of a-aryl ketones mediated by NaI[J]. Chinese Chemical Letters,
;2015, 26(2): 248-250.
doi:
10.1016/j.cclet.2014.11.006
-
Using a catalytic amount of NaI and a stoichiometric oxidant Oxone@, a convenient procedure has been developed for the catalytic oxidative 1,2-shift of arylalkenes in CH3CN/H2O at room temperature, which provides the corresponding a-aryl ketones in moderate to good yields. In this protocol, sodium iodide is first oxidized into hypoiodous acid, which reacts with arylalkene to afford iodohydrin. Then, the iodohydrin is transformed into the a-aryl ketone via an oxidative 1,2-shift rearrangement.
-
Keywords:
- Oxidative 1,2-shift,
- a-Aryl ketone,
- Sodium iodide,
- Catalysis
-
-
-
[1]
[1] P.J. Stang, V.V. Zhdankin, Organic polyvalent iodine compounds, Chem. Rev. 96 (1996) 1123-1178.
-
[2]
[2] V.V. Zhdankin, P.J. Stang, Recent developments in the chemistry of polyvalent iodine compounds, Chem. Rev. 102 (2002) 2523-2584.
-
[3]
[3] K.C. Nicolaou, K. Sugita, P.S. Baran, et al., Iodine(V) reagents in organic synthesis. Part 1. Synthesis of polycyclic heterocycles via Dess Martin periodinane-mediated cascade cyclization: generality, scope, and mechanism of the reaction, J. Am. Chem. Soc. 124 (2002) 2212-2220.
-
[4]
[4] M. Ochiai, Nucleophilic vinylic substitutions of l3-vinyliodanes, J. Organomet. Chem. 611 (2000) 494-508.
-
[5]
[5] T. Okuyama, Solvolysis of vinyl iodonium salts. New insights into vinyl cation intermediates, Acc. Chem. Res. 35 (2002) 12-18.
-
[6]
[6] J. Barluenga, M. Maro-Arias, F. Gonzá lez-Bobes, et al., Reaction of alkenes with hydrogen peroxide and sodium iodide: a nonenzymatic biogenic-like approach to iodohydrins, Chem. Eur. J. 10 (2004) 1677-1682.
-
[7]
[7] K.C. Nicolaou, Y.L. Zhong, P.S. Baran, New synthetic technology for the rapid construction of novel heterocycles-Part 1: The reaction of Dess-Martin periodinane with anilides and related compounds, Angew. Chem. Int. Ed. 39 (2000) 622-625.
-
[8]
[8] T. Dohi, M. Ito, N. Yamaoka, et al., Hypervalent iodine(III): selective and efficient single-electron-transfer (SET) oxidizing agent, Tetrahedron 65 (2009) 10797-10815.
-
[9]
[9] M. Traore´, S. Ahmed-Ali, M. Peuchmaur, et al., Hypervalent iodine(III)-mediated tandem oxidative reactions: application for the synthesis of bioactive polyspirocyclohexa-2,5-dienones, Tetrahedron 66 (2010) 5863-5872.
-
[10]
[10] M. Arisawa, N.G. Ramesh, M. Nakaima, et al., Hypervalent iodine(III)-induced intramolecular cyclization of a-(aryl) alkyl-b-dicarbonyl compounds: a convenient synthesis of benzannulated and spirobenzannulated compounds, J. Org. Chem. 66 (2001) 59-65.
-
[11]
[11] G.F. Koser, L. Rebrovic, R.H. Wettach, Functionalization of alkenes and alkynes with [hydroxy(tosyloxy)iodo]benzene. Bis(tosyloxy)alkanes, vinylaryliodonium tosylates, and alkynylaryliodonium tosylates, J. Org. Chem. 46 (1981) 4324-4326.
-
[12]
[12] L. Rebrovic, G.F. Koser, Reactions of alkenes with [hydroxy(tosyloxy)iodo]benzene: stereospecific syn-1,2-ditosyloxylation of the carbon-carbon double bond and other processes, J. Org. Chem. 49 (1984) 2462-2472.
-
[13]
[13] M.W. Justik, G.F. Koser, Oxidative rearrangements of arylalkenes with [hydroxy( tosyloxy)iodo]benzene in 95% methanol: a general, regiospecific synthesis of a-aryl ketones, Tetrahedron Lett. 45 (2004) 6159-6163.
-
[14]
[14] T. Dohi, Y. Kita, Hypervalent iodine reagents as a new entrance to organocatalysts, Chem. Commun. (2009) 2073-2085.
-
[15]
[15] M. Ochiai, Y. Takeuchi, T. Katayama, et al., Iodobenzene-catalyzed a-acetoxylation of ketones. In situ generation of hypervalent (diacyloxyiodo)benzenes using m-chloroperbenzoic acid, J. Am. Chem. Soc. 127 (2005) 12244-12245.
-
[16]
[16] M. Uyanik, K. Ishihara, Hypervalent iodine-mediated oxidation of alcohols, Chem. Commun. (2009) 2086-2099.
-
[17]
[17] R.D. Richardson, T. Wirth, Hypervalent iodine goes catalytic, Angew. Chem. Int. Ed. 45 (2006) 4402-4404.
-
[18]
[18] T. Dohi, A. Maruyama, M. Yoshimura, Versatile hypervalent-iodine(III)-catalyzed oxidations withm-chloroperbenzoic acid as a cooxidant, Angew. Chem. Int. Ed. 44 (2005) 6193-6196.
-
[19]
[19] V.C. Purohit, S.P. Allwein, R.P. Bakale, Catalytic oxidative 1,2-shift in 1,10-disubstituted olefins using arene(iodo)sulfonic acid as the precatalyst and oxone as the oxidant, Org. Lett. 15 (2013) 1650-1653.
-
[20]
[20] A. Tanaka, K. Moriyama, H. Togo, Iodoarene-mediated a-tosyloxylation of ketones with MCPBA and p-toluenesulfonic acid, Synlett (2011) 1853-1858.
-
[21]
[21] M. Zhu, L. Li, H. Zhang, C.Q. Liu, Monobromination of aromatic compounds catalyzed by iodine or ammonium iodide, Chem. J. Chin. Univ. 33 (2012) 1995-1999.
-
[22]
[22] G. Asensio, C. Andreu, C. Boix-Bernardini, R. Mello, M.E. Gonzalez-Nunez, Iodomethane oxidation by dimethyldioxirane: a new route to hypoiodous acid and iodohydrines, Org. Lett. 1 (1999) 2125-2128.
-
[1]
-
-
-
[1]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[2]
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
-
[3]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[4]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[5]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[6]
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
-
[7]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[8]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[9]
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
-
[10]
Yingtao Zhong , Ziwen Qiu , Yanmei Li , Jiaqi Huang , Zhenming Lu , Renjiang Kong , Ni Yan , Hong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846
-
[11]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[12]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[13]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[14]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[15]
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
-
[16]
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
-
[17]
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
-
[18]
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
-
[19]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[20]
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(665)
- HTML views(14)