Citation:
Yong Sun, Cui-Lin Lu, Chang-Yuan Wang, Rui-Rui Wang, Ke-Xin Liu, Liu-Meng Yang, Yu-Hong Zhen, Hou-Li Zhang, Chao Wang, Yong-Tang Zheng, Xiao-Dong Ma. Identification of the novel N-phenylbenzenesulfonamide derivatives as potent HIV inhibitors[J]. Chinese Chemical Letters,
;2015, 26(2): 243-247.
doi:
10.1016/j.cclet.2014.11.004
-
Searching for more safe and effective agents for HIV treatments is still an urgent topic worldwide. Based on our continuous modifications on the benzophenone derivatives as HIV-1 reverse transcriptase (RT) inhibitors, a new template bearing N-phenylbenzenesulfonamide (PBSA) structure was designed to enhance the interactions with HIV-1 RT. In this manuscript, a series of PBSA derivatives were synthesized and evaluated for their anti-HIV-1 activity. The preliminary test showed that these compounds were potent to inhibit wild-type HIV-1 with EC50 values ranging of 0.105-14.531 mmol/L. In particular, compound 13f not only has high anti-HIV-1 activity (0.108 mmol/L), but also possesses low toxicity with a TI value of 1816.6. Furthermore, the major interactions of the inhibitor 13f with HIV-1 RT were also investigated using the molecular modelling. Our discovered structure-activity relationships (SARs) of these analogues may serve as an important clue for further optimizations.
-
-
-
[1]
[1] W. Schaefer, W.G. Friebe, H. Leinert, et al., Non-nucleoside inhibitors of HIV-1 reverse transcriptase: molecular modeling and X-ray structure investigations, J. Med. Chem. 36 (1993) 726-732.
-
[2]
[2] J.F. Palella, K.M. Delaney, A.C. Moorman, et al., Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators, N. Engl. J. Med. 338 (1998) 853-860.
-
[3]
[3] E. De Clerck, New developments in anti-HIV chemotherapy, Curr. Med. Chem. 8 (2001) 1543-1572.
-
[4]
[4] M.P. de Be´ thune, Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009), Antivir. Res. 85 (2010) 75-90.
-
[5]
[5] R.A. Koup, V.J. Merluzzi, K.D. Hargrave, et al., Inhibition of human immunodeficiency virus type 1 (HIV-1) replication by the dipyridodiazepinone BI-RG-587, J. Infect. Dis. 163 (1991) 966-970.
-
[6]
[6] W.W. Freimuth, Delavirdine mesylate, a potent non-nucleoside HIV-1 reverse transcriptase inhibitor, Adv. Exp. Med. Biol. 394 (1996) 279-289.
-
[7]
[7] S.D. Young, S.F. Britcher, L.O. Tran, et al., L-743, 726 (DMP-266): a novel, highly potent nonnucleoside inhibitor of the human immunodeficiency virus type 1 reverse transcriptase, Antimicrob. Agents Chemother. 39 (1995) 2602-2605.
-
[8]
[8] L.B. Johnson, L.D. Saravolatz, Etravirine, a next-generation nonnucleoside reversetranscriptase inhibitor, Clin. Infect. Dis. 48 (2009) 1123-1128.
-
[9]
[9] S. Moreno, J. Ló pez Aldeguer, J.R. Arribas, et al., The future of antiretroviral therapy: challenges and needs, J. Antimicrob. Chemother. 65 (2010) 827-835.
-
[10]
[10] H. Azijn, I. Tirry, J. Vingerhoets, et al., TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTIresistant HIV-1, Antimicrob. Agents Chemother. 54 (2010) 718-727.
-
[11]
[11] Z. Zhang, R. Hamatake, Z. Hong, Clinical utility of current NNRTIs and perspectives of new agents in this class under development, Antivir. Chem. Chemother. 15 (2004) 121-134.
-
[12]
[12] Guidelines for the Use of Antiretro Iral Agents in HIV-1-Infected Adults and Adolescents. http://AIDSinfo.nih.gov (29.10.04).
-
[13]
[13] R.M. Grant, F.M. Hecht, M. Warmerdam, et al., Time trends in primary HIV-1 drug resistance among recently infected persons, JAMA 288 (2002) 181-188.
-
[14]
[14] J.H. Chan, G.A. Freeman, J.H. Tidwell, et al., Novel benzophenones as non-nucleoside reverse transcriptase inhibitors of HIV-1, J. Med. Chem. 47 (2004) 1175-1182.
-
[15]
[15] K.R. Romines, G.A. Freeman, L.T. Schaller, et al., Structure-activity relationship studies of novel benzophenones leading to the discovery of a potent, next generation HIV nonnucleoside reverse transcriptase inhibitor, J. Med. Chem. 49 (2006) 727-739.
-
[16]
[16] R.G. Ferris, R.J. Hazen, G.B. Roberts, et al., Antiviral activity of GW678248, a novel benzophenone nonnucleoside reverse transcriptase inhibitor, Antimicrob. Agents Chemother. 49 (2005) 4046-4051.
-
[17]
[17] P.G. Wyatt, R.C. Bethell, N. Cammack, et al., Benzophenone derivatives: a novel series of potent and selective inhibitors of human immunodeficiency virus type 1 reverse transcriptase, J. Med. Chem. 38 (1995) 1657-1665.
-
[18]
[18] X.D. Ma, Q.Q. He, X. Zhang, et al., Synthesis, structure-activity relationships, and docking studies of N-phenylarylformamide derivatives (PAFAs) as non-nucleoside HIV reverse transcriptase inhibitors, Eur. J. Med. Chem. 58 (2012) 504-512.
-
[19]
[19] X.D. Ma, X. Zhang, H.F. Dai, et al., Synthesis and biological activity of naphthylsubstituted (B-ring) benzophenone derivatives as novel non-nucleoside HIV-1 reverse transcriptase inhibitors, Bioorg. Med. Chem. 19 (2011) 4601-4607.
-
[20]
[20] X.D. Ma, X. Zhang, S.Q. Yang, et al., Synthesis and biological evaluation of (±)-benzhydrol derivatives as potent non-nucleoside HIV-1 reverse transcriptase inhibitors, Bioorg. Med. Chem. 19 (2011) 4704-4709.
-
[21]
[21] S.X. Gu, X. Zhang, Q.Q. He, et al., Synthesis and biological evaluation of naphthyl phenyl ethers (NPEs) as novel nonnucleoside HIV-1 reverse transcriptase inhibitors, Bioorg. Med. Chem. 19 (2011) 4220-4226.
-
[22]
[22] Y.T. Zheng, K.L. Ben, S.W. Jin, Anti-HIV-1 activity of trichobitacin, a novel ribosome-inactivating protein, Acta Pharmacol. Sin. 21 (2000) 179-182.
-
[23]
[23] D.S. Goodsell, G.M. Morris, A.J. Olson, Automated docking of flexible ligands: applications of AutoDock, J. Mol. Recognit. 9 (1996) 1-5.
-
[1]
-
-
-
[1]
Yunfa Dong , Shijie Zhong , Yuhui He , Zhezhi Liu , Shengyu Zhou , Qun Li , Yashuai Pang , Haodong Xie , Yuanpeng Ji , Yuanpeng Liu , Jiecai Han , Weidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261
-
[2]
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971
-
[3]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[4]
Jian Song , Shenghui Wang , Qiuge Liu , Xiao Wang , Shuo Yuan , Hongmin Liu , Saiyang Zhang . N-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678
-
[5]
Lijun Mao , Shuo Li , Xin Zhang , Zhan-Ting Li , Da Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363
-
[6]
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
-
[7]
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
-
[8]
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
-
[9]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[10]
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
-
[11]
Yan XU , Suzhi LI , Yan LI , Lushun FENG , Wentao SUN , Xinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226
-
[12]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[13]
Xiaxia LIU , Xiaofang MA , Luxia GUO , Xianda HAN , Sisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269
-
[14]
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
-
[15]
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
-
[16]
Wenbi Wu , Yinchu Dong , Haofan Liu , Xuebing Jiang , Li Li , Yi Zhang , Maling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260
-
[17]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[18]
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
-
[19]
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
-
[20]
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(646)
- HTML views(0)